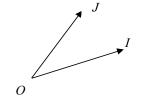
عدد الساعات: 5

I. إحداثيات متجهة احداثيات نقطة:

1. أساس مستوى معلم مستوى:

تعریف: إذا كانت i و j متجهتین غیر مستقیمیتین فان الزوج (i,j) یسمی أساسا للمستوی.

خاصية: إذا كانت O و I و J ثلاث نقط غير مستقيمية فان: $(\overrightarrow{OI}, \overrightarrow{OJ})$ أساس للمستوى. المتلوث $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ يسمي معلما للمستوى.

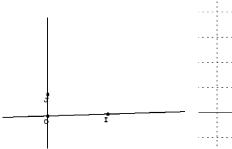


مثال: إذا كان ABC مثلثا فان $(\overline{AB},\overline{AC})$ أساس للمستوى.و $(A,\overline{AB},\overline{AC})$ معلم للمستوى.

 $\overrightarrow{OJ} = \overrightarrow{j}$ و $\overrightarrow{OI} = \overrightarrow{i}$ عادة نضع

فيصبح لدينا: (\vec{i}, \vec{j}) أساس للمستوى و (\vec{i}, \vec{j}) معلم للمستوى.

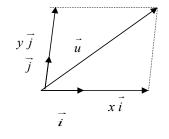
معلم متعامد ممنظم



2. إحداثيتا متجهة:

خاصية و تعريف:

 $\vec{u} = x\vec{i} + y\vec{j}$ ليكن (x,y) بحيث يوجد زوج وحيد (x,y) بحيث لكل متجهة \vec{u} يوجد زوج $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ الزوج (x,y) يسمى زوج إحداثيتي المتجهة \vec{u} و نكتب x=y' و x=x' و فان: $\overline{u}=\overline{u'}$ فان: $\overline{u'}(x',y')$ و $\overline{u}(x,y)$



- ** تمرین تطبیقی : (01 س)
- ** تمرین تطبیقی : (02 س)
- 3. إحداثيات مجموع متجهتين-إحداثيات ضرب متجهة في عدد حقيقي:

خاصية و تعريف: ليكن $\left(\overline{i},\overline{j}
ight)$ أساسا للمستوى و k عددا حقيقيا.

إذا كان (x,y')و (x',y')هما زوجا إحداثيتي المتجهتين \overrightarrow{U} و \overrightarrow{V} على التوالي فان (x',y')هما زوج إحداثيتي $.\overrightarrow{V}$ $_{+}\overrightarrow{U}$ المتجهة

 $k\,\overline{U}$ هو زوج إحداثيتي المتجهة ($kx\,,ky\,$) هو زوج إحداثيتي المتجهة إذا كان ($x\,,y\,$) هو زوج إحداثيتي

برهان:

V = (-5,1) وU = (3,-2) المتجهتين المستوى, المتجهتين

-2,-1) الخاصية, زوج إحداثيتي المتجهة \overrightarrow{U} $+\overrightarrow{V}$ هو (3-5,-2+1) أي المتجهة حسب الخاصية,

و زوج إحداثيتي المتجهة 5u هو $(5 \times 3, 5(-2))$ أي $(5 \times 15, -10)$.

** تمرین تطبیقی : (03 - س)

4. شرط استقامیة متجهتین:

خاصية و تعريف:

 (\vec{i},\vec{j}) متجهتین من المستوی المنسوب إلى الأساس $\vec{v}(x',y')$ و $\vec{u}(x,y)$

xv'-x'v=0 و مستقیمیتان اِذا و فقط اِذا کان v=0

 $\det(\vec{u},\vec{v}) = \begin{vmatrix} x & x' \\ v & y' \end{vmatrix} = xy' - x'y$ يسمى محددة المتجهتين \vec{u} و \vec{v} بالنسبة للأساس \vec{v} و نكتب: \vec{v} يسمى محددة المتجهتين \vec{u}

برهان:

U=(-6,4) و U=(3,-2) و $u\left(x\,,y\,
ight)$ المتجهتين $u\left(x\,,y\,
ight)$ و U=(3,-2) و U=(3,-2) و U=(3,-2)

v و u مستقیمیتن

** تمرین تطبیقی : (04 - س)

5. إحداثيات نقطة:

$$|\overrightarrow{OJ} = \overrightarrow{j}|$$
 و $|\overrightarrow{OI} = \overrightarrow{i}|$ معلما بحيث ايكن $|\overrightarrow{O}, \overrightarrow{i}, \overrightarrow{j}|$ معلما بحيث

 $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j}$:بحیث (x, y) بحیث یوجد زوج وحید (x, y) بحیث M من المستوی یوجد زوج وحید $M\left(x\,,y\,
ight)$ و كتب $\left(O\,,ec{i}\,,ec{j}\,
ight)$ الزوج $\left(X\,,y\,
ight)$ و كتب النقطة M

خاصية: ليكن
$$(O, \vec{i}, \vec{j})$$
 معلما. (X, y) تكافئ (M, y) معلما. (X, y) معلما.

مثال في مثلث \overrightarrow{ABC} إذا كانت $\overrightarrow{ABC} - 2\overrightarrow{AC}$ فان زوج إحداثيتي (3,-2) هو $(\overrightarrow{A},\overrightarrow{AB},\overrightarrow{AC})$ هو (3,-2) النقطة M

** تمرين تطبيقي : (05 - س)

6. إحداثيتا متجهة AB:

خاصیة:ایکن (O,\vec{i},\vec{j}) معلما.

 $\overrightarrow{AB}(x_B - x_A, y_B - y_A)$ فان: $B(x_B, y_B)$ و $A(x_A, y_A)$ A في الكتابة y_A هو X_A فصول A هو أرتوب A

مثال: إذا كانت
$$(1,-4)$$
 هو $(3,7)$ ه فان $(3,7)$ هان $(3,7)$ أي \overline{AB} أي أن \overline{AB} $(-3,7)$ و \overline{AB} $(-4,11)$ و \overline{AB}

7. إحداثيتا منتصف قطعة:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} A & B & (x_B, y_B) & g & (x_A, y_A) \end{aligned} & A & (x_A, y_A) \end{aligned}$$
فان: $M & \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2} \right)$ فان:

8. المسافة بين نقطتين:

خاصية: ليكن (O,i,j) معلما متعامدا ممنظما. إذا كانت

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 : فان $B(x_B, y_B)$ و $A(x_A, y_A)$

مثال: المسافة بين النقطتين $A\left(3,1
ight)$ و $B\left(-1,2
ight)$ في معلم متعامد ممنظم هي:

$$AB = \sqrt{(-1-3)^2 + (2-1)^2}$$
 أي أن $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ و بالنالي: $AB = \sqrt{17}$

** تمرین تطبیقی : (06 - س)

مستقیم معرف بنقطة و متجهة:

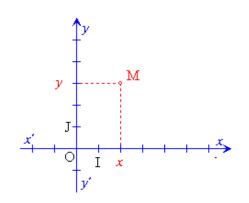
1. متجهة موجهة لمستقيم:

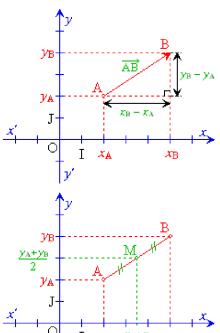
B
ightharpoonup A و قطتین مختلفتین A و A

كل متجهة \overrightarrow{u} غير منعدمة و مستقيمية مع المتجهة \overrightarrow{AB} تسمى متجهة موجهة للمستقيم (D).

(AB) نقول كذلك أن (D)يمر من A و موجه بالمتجهة $\overset{ op}{u}$ ولدينا كذلك نقول كذلك أن

 $A\left(1;0
ight)$. النقطتان $B\left(0;-1
ight)$ و $A\left(1;0
ight)$ تنتميان إلى y=x-1 النقطتان (D) الذي معادلته $B\left(0;-1\right)$ AB (-1;-1) إذن: (D) متجهة موجهة للمستقيم





تعریف: لتكن A نقطة من المستوى و u متجهة غیر منعدمة. مجموعة النقط M من المستوى التي تحقق $\overline{AM}=t\overline{u}$ حيث D .

2. تمثيل بارامتري لمستقيم:

تعریف:ایکن (P)معلما للمستوی (P) و لتکن $(x_0;y_0)$ نقطة من (P) و (a;b) متجهة غیر منعدمة.

$$\vec{u}\left(a;b
ight)$$
تسمى بار ا متريا للمستقيم (D) المار من $A\left(x_{0};y_{0}
ight)$ و الموجه بالمتجهة $\begin{cases} x=x_{0}+at \\ y=y_{0}+bt \end{cases}$; $(t\in\mathbb{R})$

 $\vec{u}(-2;3)$ و المتجهة A(3;-5) مثال: نعتبر النقطة

$$\begin{cases} x=3-2t \\ v=-5+3t \end{cases}$$
 ($t\in\mathbb{R}$) هو: $D\left(A;\overrightarrow{u}\right)$ هو: تمثيل بار امتري للمستقيم

ملحوظة: كل مستقيم (D)يقبل ما لا نهاية من التمثيلات البار امترية.

** تمرین تطبیقي : (07 - س)

III. معادلة ديكارتية لمستقيم في المستوى:

خاصية: ليكن (O,\vec{i},\vec{j}) معلما كل مستقيم (D) في المستوى له معادلة على الشكل ax+by+c=0 حيث $a\neq 0$ أو $a\neq 0$ تسمى معادلة ديكارتية للمستقيم $a\neq 0$.

برهان:

** تمرين تطبيقي : (08 - س)

** تمرین تطبیقی : (09 - س)

 $a \neq 0$ أو $a \neq 0$ أعدادا حقيقية حيث $a \neq 0$ أو $a \neq 0$ أو $a \neq 0$ أعدادا حقيقية حيث $a \neq 0$ أو $a \neq 0$ مجموعة النقط $a \neq 0$ بحيث $a \neq 0$ بحيث $a \neq 0$ هي موجه بالمتجهة $a \neq 0$ بحيث $a \neq 0$ هي موجه بالمتجهة $a \neq 0$ بحيث $a \neq 0$ هي موجه بالمتجهة $a \neq 0$ أو مجموعة النقط $a \neq 0$ أو معلما والمتجهة أو معلما والمتحدد أن م

برهان:

** تمرین تطبیقی : (10 - س)

IV. الأوضاع النسبية لمستقيمين:

لقد تعرفت في السنة الفارطة على توازي مستقيمين باستعمال صيغتي معادلتيهما المختصرة.

 (Δ) : a'x + b'y + c' = 0 و (D): ax + by + c = 0 عتبر المستقيمين (Δ) : ab' - a'b = 0 عنبر الخان: (Δ) متوازيان إذا و فقط إذا كان: (D)

برهان:

$$(\Delta): y = m'x + p'$$
 عادی $(D): y = mx + p$

m=m' :يعني أن $\left(\Delta\right)\|\left(D\right)$

(D) أو المعامل الموجه للمستقيم (D)

 (Δ) و (D) المستقيمين (D,i,j) المستقيمين المعلم المتعامد الممنظم (D,i,j)

$$(\Delta): 4x + 6y + 7 = 0$$
 $(D): 2x + 3y + 1 = 0$

 (Δ) و (D) و المعامل المجه لكل من المستقيمين

 (Δ) (D) ها .2

** تمرین تطبیقی : (11 - س)

تماربن: تطبيقية

تمرين 1:

ليكن (\vec{i}, \vec{j}) أساسا للمستوى.

 $\overrightarrow{U} = (3x+1)\overrightarrow{i} + 2\overrightarrow{j}$ نعتبر المتجهتین \overrightarrow{U} و \overrightarrow{V} بحیث: \overrightarrow{V} و \overrightarrow{V} عددین حقیقیین. و $\overrightarrow{V} = 4\overrightarrow{i} + (y-3)\overrightarrow{j}$ و \overrightarrow{V}

د. هل يمكن أن تكون \overrightarrow{U} متجهة منعدمة?

 $\overrightarrow{U} = \overrightarrow{V}$ if $\overrightarrow{U} = y$ x 2.

تمرین 2:

ليكن ABCDمتوازي أضلاع و I و J هي على التوالي منتصفات القطع ABCD و ABCD .

ننسب المستوى إلى الأساس $(\overrightarrow{AB}, \overrightarrow{AD})$.

 \overrightarrow{AK} عدد زوج إحداثيات المتجهتين \overrightarrow{AC} و \overrightarrow{AK} .

 $2\overline{IK}$ مدد زوج إحداثيتي المتجهة $2\overline{IK}$.

تمرین 3:

نعتبر في المستوى المنسوب إلى الأساس (\vec{i}, \vec{j}) المتجهات:

. $\overrightarrow{W}=\left(4;1\right)$ و $\overrightarrow{V}=\left(3;7\right)$ و $\overrightarrow{U}=\left(1;2\right)$

. $3\overline{W}$ $+\overline{V}$ و $2\overline{U}$ $-\overline{V}$ عدد زوج إحداثيتي المتجهتين:

تمرین 4:

 $\vec{u} = \left(3\sqrt{2}, -\frac{5}{2}\right)$ نعتبر الأساس $\left(\vec{i}, \vec{j}\right)$ و المتجهتين $\vec{v} = (a-1, 4)$ و

حدد q علما أن المتجهتين \vec{u} و \vec{v} مستقيميتان.

تمرین 5:

ليكن OIKJمتوازي الأضلاع.

$$\begin{cases} \overrightarrow{OI} = \overrightarrow{i} \\ \overrightarrow{OJ} = \overrightarrow{j} \end{cases}$$
بحیث: $(O, \overrightarrow{i}, \overrightarrow{j})$ بحیث:

انطلاقا من L و K و J و انطلاقا من الشكل.

. P(0;-2) و N(2;2,5) و M(-3;2) . أرسم النقط:

T , S , R , Q : نشئ النقط: 3

$$\overrightarrow{OR} = -\overrightarrow{j}$$
, $\overrightarrow{OQ} = 0.5\overrightarrow{i} - 2\overrightarrow{j}$
 $\overrightarrow{OT} = -\overrightarrow{i} - 2\overrightarrow{j}$, $\overrightarrow{OS} = -3\overrightarrow{i} + 3\overrightarrow{j}$

تمرین 6:

المستوى المنسوب إلى معلم متعامد ممنظم (O, \vec{i}, \vec{j}) .

حدد إحداثيتي المتجهة \overrightarrow{AB} و إحداثيتي منتصف القطعة $\begin{bmatrix} AB \end{bmatrix}$ ثم احسب المسافة $\begin{bmatrix} AB \end{bmatrix}$ في الحالة التالية:

.B(4;-9), A(0;-5)

تمرین 7:

المستوى منسوب إلى معلم (O, \vec{i}, \vec{j}) .

نعتبر في المستوى (P)المستقيم (D)المار من

 $A\left(5;4\right)$ و $A\left(3;-2\right)$ النقطتين

(D)حدد تمثيلا بارا متريا للمستقيم

تمرین 8:

حدد معادلة ديكارتية للمستقيم (D) المعرف بالتمثيل البارامتري

$$\begin{cases} x = 1 + 2t \\ y = 3 - 4t \end{cases}, (t \in \mathbb{R})$$
 التالي:

تمرين 9:

A(1;2) حدد معادلة ديكارتية للمستقيم المار من النقطتين

B(-1;3) و

تمرین 10:

حدد تمثيلا بارا متريا للمستقيم (D) المعرف بالمعادلة الديكارتية 3x-2y+4=0

تمرین 11:

نعتبر المستقيمات (D_1) و (D_2) و (D_3) المعرفة كما يلى:

$$(D_2): 2x - \frac{1}{3}y - 1 = 0$$
 $g(D_1): 5x - 3y + 2 = 0$

 $(D_3): 6x - y + 3 = 0$

. بين أن (D_1) و (D_1) متقاطعان.

يين أن $\left(D_{\scriptscriptstyle 2}\right)$ و $\left(D_{\scriptscriptstyle 2}\right)$ متوازيان قطعا.

و $A\left(1;2\right)$ المار من $A\left(1;2\right)$ و . حدد تمثيلا بارا متريا للمستقيم $A\left(1;2\right)$.