مستوى الدراسي: TCS - TCT

عدد الساعات: 05

الحساب المتجهي

الثانوية التأهيلية: وادي الدهب الأستاذ: رشيد بلمو

I. متجهات المستوى: (تذكير)

1-عناصر متجهة:

 \overrightarrow{u} و \overrightarrow{a} نقطتان مختلفتان. إذا رمزنا لمتجهة \overrightarrow{AB} بالرمز \overrightarrow{u} فان:

- \vec{u} هو المستقيم ((AB).
- B هو المنحى من A إلى u
- $\|\vec{u}\| = AB$.و نكتب: 3 منظم \vec{u} هو المسافة

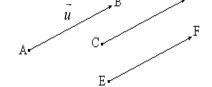
حالة خاصة: المتجهة \overrightarrow{AA} ليس لها اتجاه و منظمها منعدم, و تسمى المتجهة المنعدم, و تكتب $\overrightarrow{AA}=\overrightarrow{O}$.

خاصية: u بحيث u بحيث المستوى توجد نقطة وحيدة u بحيث u

** تمرین تطبیقی : (01 - س)

2-تساوی متجهتین:

تعريف: نقول إن متجهتين متساويتين إذا كان لهما نفس الاتجاه و نفس المنحى و نفس المنظم.



خاصية:اليكن ABCD رباعيا. $\overline{AB} = \overline{DC}$ تكافئ ABCD متوازي أضلاع.

 $\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$ المستوى. لكل نقطة من المستوى. لكل نقطة C من المستوى. لدينا: $A \subset A \subset A$ و $A \subset A$ نقطة من المستوى. الدينا:

 $\overrightarrow{AB} + \overrightarrow{EC} + \overrightarrow{BE} + \overrightarrow{CA} = \overrightarrow{AF} + \overrightarrow{EC} + \overrightarrow{CA} = \overrightarrow{AC} + \overrightarrow{CA} = 0$



و A و B ثلاث نقط غیر مستقیمیة.

مجموع المتجهتين \overrightarrow{OA} و \overrightarrow{OB} هو المتجهة \overrightarrow{OC} بحيث يكون الرباعي OACB متوازي الأضلاع.

مقابل متجهة:

خاصية: لتكن \vec{u} متجهة عير منعدمة.

-u مقابلة المتجهة u هي المتجهة التي لها نفس الاتجاه و نفس المنظم و منحناها عكس منحي المتجهة u, و يرمز لها بالرمز -AB = BA

** تمرین تطبیقی : (03 - س)

** تمرین تطبیقی : (05 - س)

II. ضرب متجهة في عدد حقيقي:

متجهة غير منعدمة و k عددا حقيقيا غير منعدم. ضرب المتجهة \vec{u} في العدد الحقيقي k هي المتجهة التي نرمز لها \vec{u} بالرمز u. بالرمز $k \cdot u$ و المعرفة كما يلى:

 \vec{u} نفس اتجاه المتجهة

 $k\prec 0$ المتجهة u في حالة: $k\succ 0$ لها منحى معاكس المتجهة u في حالة: u

منظمها يساوي $\|\vec{u}\| \times |\vec{k}|$.

 $\overline{AD} = -3\overline{AB}$ و $\overline{AC} = 2\overline{AB}$: أرسم النقطتين C و $\overline{AC} = 2\overline{AB}$ و عنقطتان من المستوى بحيث $\overline{AB} = 1cm$ أرسم النقطتين

$$k$$
 الدينا: k عددين حقيقيين k و لكل عددين حقيقيين k الدينا: k الدينا: k عددين حقيقيين k الدينا: k

$$2\left(\frac{3}{2}\overrightarrow{AB}\right) = \left(2 \times \frac{3}{2}\right)\overrightarrow{AB} = 3\overrightarrow{AB}$$

$$5\overrightarrow{AB} - \frac{3}{2}\overrightarrow{AB} = \left(5 - \frac{3}{2}\right)\overrightarrow{AB} = \frac{7}{2}\overrightarrow{AB} = \frac{7}{2}\overrightarrow{AB}$$

$$2\overrightarrow{AB} = \overrightarrow{0}$$

$$2\overrightarrow{AB} + 2\overrightarrow{BC} = 2\left(\overrightarrow{AB} + \overrightarrow{BC}\right) = 2\overrightarrow{AC}$$

** تمرين تطبيقي : (08 - س)

استقامية متجهتين استقامية ثلاث نقط

تعریف: لتکن \vec{u} و \vec{v} متجهتین غیر منعدمتین. $\vec{v}=k\vec{u}$: \vec{v} مستقیمیتان إذا وجد عدد حقیقی \vec{k} غیر منعدم حیث: $\vec{v}=k\vec{u}$ المتجهة المنعدمة مستقیمیة مع جمیع المتجهات.

خاصية:

 $C \neq D$ و $A \neq B$ اربع نقط حیث $A \neq B$ و $C \neq D$ و $C \neq D$ و $C \neq D$ متوازیین. $CD \neq C$ مستقیمیتان إذا و فقط إذا کان $CD \neq C$ متوازیین.

خاصیة: تکون النقط A و B و B مستقیمیة إذا و فقط إذا کانت \overline{AB} مستقیمیتین.

[CD] قاعدتاه [AB]و [AB] هاعدتاه [AB]

لدينا المتجهتان \overrightarrow{AB} و مستقيميتان.

** تمرین تطبیقی : (09 - س)

** تمرین تطبیقي : (12 - س)

III. منتصف قطعة:

 $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ اذا وفقط إذا كان I منتصف I

برهان:

خاصية: (الخاصية المميزة لمنتصف قطعة)

AB [AB] قطعة منتصفها

 $2\overrightarrow{MI} = \overrightarrow{MA} + \overrightarrow{MB}$ لكل نقطة M من المستوى لدينا:

برهان:

** تمرين تطبيقي : (14 - س)

 $\vec{L} = \frac{1}{2} \overline{BC}$ فان: AC فان: AC فان: ABC فان: ABC

برهان:

** تمرین تطبیقی : (13 - س)