الثانوية التأهيلية: وادي الذهب الأستاذ: رشيد بلمو

المعادلات من الدرجة الأولى بمجهول واحد (تذكير)

تعریف:ایکن aو b عددین حقیقیین.

كل معادلة على الشكل ax + b = 0 تسمى معادلة من الدرجة الأولى بمجهول واحد, حيث x هو المجهول.

مثال1: حل في \mathbb{R} المعادلة: (E): -2x + 22 = 0 المعادلة: \mathbb{R} المعادلة: \mathbb{R}

(E): 3(2x+5) = 6x-1 المعادلة: \mathbb{R} عثال 2: حل في

(E): 4(x-2) = 6x - 2(x+4) المعادلة: \mathbb{R} المعادلة:

ال. معادلات تؤول في حلها إلى معادلات من الدرجة الأولى بمجهول واحد:

(ax + b)(cx + d) = 0: معادلات من النوع

(E):(2x-1)(3+x)=0 المعادلة: \mathbb{R} عثال 1: حل في

 $(E)\frac{3x-2}{x+1}=0$ المعادلة: \mathbb{R} حل في

|2x-5|=-1 , |3x+1|=4 , |x-2|=0 :مثال 3 المعاد لات التالية المعاد التالية التالية المعاد التالية التالي

ا المتراجحات من الدرجة الأولى بمجهول واحد (تذكير):

تعریف؛ لیکن aو b عددین حقیقبین کل متر اجحة علی الشکل $ax+b\geq 0$ أو ax+b>0 أو $ax+b\leq 0$ أو $ax+b\prec 0$ تسمی متر اجحة من الدرجة الأولى بمجهول و احد حیث x هو المجهول.

 $a \prec 0$ إذا كان

ax + b إشارة الحدانية

حسب إشارة العدد a , لدينا الجدولان الأتيان:

 $a \succ 0$ إذا كان

x	$-\infty$	$-\frac{b}{}$	$+\infty$
		а	
ax + b	+	0	_

x	$-\infty$	$-\frac{b}{a}$	+∞
ax + b	_	0	+

 $+\infty$

نلخص الجدولين في الجدول التالي:

مثال 1: لنحدد إشارة 1+ 2x

-x + 2 لنحدد إشارة 2:

$$-2x+16>0$$
 و $2x+8\leq 0$ و $-3x+6\geq 0$ و $2x+1\leq 0$ و $2x+1\leq 0$

$$R(x) = (x+1)^2(x+2)(-x+3)$$
 و $q(x) = \frac{5x-2}{1+3x}$ و $p(x) = (1-x)(2x+3)$ و $p(x+2)(-x+3)$

a عكس إشارة 0

الطريقة : في جدول تعطي إشارة كل عامل على الشكل ax + b ثم استنتج إشارة الجداء أو الخارج مع ترتيب تزايدي للقيم التي ينعدم فيها كل عامل.

 $-\infty$

IV. المعادلات من الدرجة الثانية بمجهول واحد:

تعريف: المعادلة $ax^2 + bx + c = 0$ حيث $ax^2 + bx + c = 0$ تسمى معادلة من الدرجة الثانية بمجهول واحد.

$$3(-1)^2 + 5(-1) + 2 = 0$$
 لأن: $3x^2 + 5x + 2 = 0$ مثال 1: العدد 1- حل للمعادلة

$$x^{2} + (1 - \sqrt{3})x - \sqrt{3} = 0$$
مثال 2: العدد $\sqrt{3}$ حل للمعادلة

$$(\sqrt{3})^2 + (1-\sqrt{3})\sqrt{3} - \sqrt{3} = 3 + \sqrt{3} - 3 - \sqrt{3} = 0$$
 : $\forall \dot{0}$

ملاحظة: كل عدد حقيقي x_0 يحقق المتساوية $ax^2 + bx + c = 0$ هو حل للمعادلة $ax^2 + bx + c = 0$ و يسمى جذر للحدودية $ax^2 + bx + c = 0$ الحدودية

 $ax^2 + bx + c$ الشكل القانوني لثلاثية الحدود

خاصیة: a و b و cثلاثة أعداد حقیقیة. و aغیر منعدم.

$$ax^2 + bx + c = a\left(\left(x + \frac{b^2}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right)$$
 لکل x من x لدینا:

$$ax^2+bx+c$$
 الكتابة $\left(\left(x+\frac{b^2}{2a}\right)^2-\frac{b^2-4ac}{4a^2}\right)$ الكتابة الحدود ، $a\left(\left(x+\frac{b^2}{2a}\right)^2-\frac{b^2-4ac}{4a^2}\right)$

. $P(x) = 2x^2 + 5x + 2$ مثال: نعتبر الحدودية

حل معادلة من الدرجة الثانية بمجهول واحد:

 $P(x) = ax^2 + bx + c$ عريف:اتكن ثلاثية الحدود

. Δ العدد الحقيقي $ax^2+bx+c=0$ يسمى مميز ثلاثية الحدود أو مميز المعادلة $ax^2+bx+c=0$ يسمى مميز ثلاثية الحدود أو مميز المعادلة

(E): 3 $x^2 - 5x + 7 = 0$ انحسب مميز المعادلة (E): 3 $x^2 - 5x + 7 = 0$

delta الرمز Δ يقر أ: دلتا

 $2x^2 + 6x + 15$: الشكل القانوني لثلاثية الحدود: لنحدد الشكل القانوني لثلاثية الحدود:

 $2x^2 + 5x$ القانوني لثلاثية الحدود: $2x^2 + 5x$

تحديد مجموعة حلول معادلة من الدرجة الثانية بمجهول واحد:

$$4a^2 = \left(2a\right)^2$$
 و $\Delta = b^2 - 4ac$: و بما أن: $\Delta = b^2 - 4ac$ و بما أن:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{\Delta}{(2a)^{2}} \right]$$
 :

$$\mathbb{R}$$
 إذا كان $0
ightarrow \Delta$ فان: $0
ightharpoonup \Delta$ و بالتالي المعادلة $\left(E
ight)$ ليس لها حل في Φ .

$$a\left(x+rac{b}{2a}
ight)^2=0$$
 إذا كان $\Delta=0$ فان المعادلة (E) قان المعادلة -

 $x=-rac{b}{2}$ و بما أن $\Delta \prec 0$ فان حل المعادلة (E) هو

$$\left(x-\frac{-b+\sqrt{\Delta}}{2a}\right)\left(x-\frac{-b-\sqrt{\Delta}}{2a}\right)=0$$
 إذا كان $0 > \Delta \geq 0$ تكتب $a\left(x+\frac{b}{2a}\right)^2-\left(\frac{\Delta}{2a}\right)^2=0$ تكتب $a\left(x+\frac{b}{2a}\right)^2$

 $\frac{-b+\sqrt{\Delta}}{2a}$ و بالتالي المعادلة (E) تقبل حلين مختلفين هما: في حالة $\Delta=0$ نقول إن المعادلة (E) نقبل حلا مز دوجا.

خاصية: نعتبر المعادلة $a \neq 0$ bx + c = 0 و ليكن Δ مميزها.

 $_{\cdot}$. \mathbb{R} فان المعادلة ليس لها حل في ✓

$$-rac{b}{2a}$$
 إذا كان $\Delta=0$ فان المعادلة تقبل حلا وجيدا هو $\Delta=0$

$$-\frac{b}{2a}$$
 إذا كان $\Delta=0$ فان المعادلة تقبل حلا وجيدا هو $\Delta=0$ إذا كان $\Delta=0$ فان المعادلة تقبل حلين مختلفين هما: $\Delta=0$ و $\Delta=0$ إذا كان $\Delta=0$ فان المعادلة تقبل حلين مختلفين المعادلة تقبل حلين المعادلة تقبل حلين المعادلة تقبل حلين المعادلة تقبل المعادلة تقبل حلين مختلفين المعادلة تقبل حلين المعادلة تقبل المعادلة المعادلة

S نرمز لمجموعة حلول المعادلة بالرمز

$$3x^2 + x + 2 = 0$$
 مثال: المعادلة

$$x^2 - 10x + 25 = 0$$

$$x^2 - 3x + 2 = 0$$
 مثال 3: نعتبر المعادلة

مجموع و جذاء حلى معادلة من الدرجة الثانية:

 $ax^2 + bx + c$ تعميل و اشارة ثلاثية الحدود.

تعميل ثلاثية الحدود عميل ثلاثية

مميزها. $ax^2 + bx + c$ و ليكن مميزها.

 x_2 و x_1 تقبل حلين مختلفين $ax^2+bx+c=0$ عان المعادلة $\Delta\succ 0$.1

 $ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$ و لدينا:

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2}$$
 : فان: $\Delta = 0$: 2

ين من الدرجة الأولى. $\Delta \prec 0$ إذا كان: $\Delta \prec 0$ فان: $\Delta \prec 0$ لا يمكن تعميلها إلى حدوديتين من الدرجة الأولى.

$R(x) = 6x^2 - x - 1$ مثال: نعتبر الحدودية

$ax^2 + bx + c$ إشارة ثلاثية الحدود

خاصية: نعتبر ثلاثية الحدود $P(x) = ax^2 + bx + c$ و ليكن Δ مميزها.

- a فان إشارة $P\left(x\right)$ هي إشارة العدد $\Delta \prec 0$ اذا كان $\Delta \prec 0$
- $P\left(-\frac{b}{2a}\right)=0$ و $P\left(x\right)$ هي إشارة a لكل a من a يخالف a و a فان إشارة a فان إشارة a هي إشارة a كل a عن a
- ي الجذرين x_1 و x_2 هما جذري ثلاثية الحدود P(x) فان: P(x) لها إشارة العدد x_2 و x_1 و x_2 هما جذرين و x_1 ثلاثية الحدود x_2 فان: x_1 فان: x_2 لها عكس x_2 و الجذرين و x_1 هما جذرين و x_2 الها عكس x_2 فان: x_1 الها إشارة العدد x_2 فان: x_1 الها عكس x_2 فان: x_2 الها عكس x_2 فان: x_1 الها إشارة العدد x_2 فان: x_1 فان: x_2 فان:

$P(x) = 6x^2 - x - 1$ مثال: لنحدد إشارة الحدودية

ملحوظة: لحل متراجحة من الدرجة الثانية بمجهول واحد نعتمد على دراسة إشارة ثلاثية الحدود المرتبطة بها.

نتيحه:

$$ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 + \frac{-\Delta}{4a^2}\right]$$
 فان: $\Delta < 0$ فان:

aو بما أن: $a = ax^2 + bx + c$ فان إشارة ثلاثية الحدود $a = ax^2 + bx + c$ هي إشارة $a = ax^2 + bx + c$ فان إشارة ثلاثية الحدود

$$ax^2 + bx + c$$
 فان: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)$ فان: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)$ فان: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)$ فان: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)$

x		$-\infty$ x_1	<i>x</i> ₂ +∞
а	<i>a</i> إشارة	a إشارة	اشارة a
$x - x_1$	_	+	+
$x-x_2$	_	-	+
$(x-x_1)(x-x_2)$	+	-	+
$a(x-x_1)(x-x_2)$	a إشارة	إشارة (–a)	إشارة a

 ax^2+bx+c فان: $(x-x_1)(x-x_2)$ هما حلي المعادلة $ax^2+bx+c=a(x-x_1)(x-x_2)$ فان: • • كان ax^2+bx+c

 $x_1 \prec x_2$ لنضع جدول إشارة الجداء: نفترض أن

X	∞	x	1	x ₂ +∞
$ax^2 + bx + c$		a إشارة	$\left(-a\right)$ إشارة	a إشارة

VI. معادلات من الدرجة الأولى بمجهولين:

 $y\in\mathbb{R}$ و $x\in\mathbb{R}$ و ي مجموعة الأزواج $(x\,,y\,)$ حيث

2x+3y=2 : المعادلة \mathbb{R}^2 المجموعة مثال: نعتبر في المجموعة

$$2x+3y=2$$
 كل المعادلة: $2x+3y=2$ 1.

$$2x+3y=2$$
 عط ثلاث أزواج حلول للمعادلة: 2

$$2x+3y=2$$
 : المعادلة \mathbb{R}^2 حل في 3

. y و x عداد حقیقیة هي معادلة من الدرجة الأولى بمجهولین x و x عداد حقیقیة هي معادلة من الدرجة الأولى بمجهولین x و x عداد حقیقیة هي معادلة من الدرجة الأولى بمجهولین x و x عداد حقیقیة هي معادلة من الدرجة الأولى بمجهولین x و x عداد عداد حقیقیة هي معادلة x و x مداد المعادلة x و نقط إذا كان x و x مداد عداد حقیقیة هي معادلة x و x مداد و نقط إذا كان x و x

 $a\alpha+b\beta=c$ التي تحقق الأزواج ($\alpha;eta$) التي تحقق عديد جميع الأزواج

إذا كان $a \neq 0$ أو $b \neq 0$ فان المعادلة ax + by = c قان المعادلة من الحلول.

مثال: الزوج (3,2)حل للمعادلة: y=7=3 لأن y=3+3 و كذلك الزوج (3,2).

VII. نظمة معادلتين من الدرجة الأولى بمجهولين:

اعتمادا على النشاط رقم 9 لدينا التعريف و الخاصية الأتيتان:

نعتبر النظمة: $\begin{cases} ax + by = c \\ a'x + b'y = c \end{cases}$ عداد حقیقیة.

هناك عدة طرق لحل نظمة سبق أن درست طريقتين هما طريقة التعويض و التأليفة الخطية طبعا هناك طريقة أخرى انتبه

 $D = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix}$ يسمى محددة النظمة (S) و نكتب: ab' - a'b يسمى محددة النظمة (S) و نكتب:

إذا كان D=0 فان النظمة S قد لا يكون لها أي حل, و قد يكون لها عدد لا منته من الحلول.

إذا كان $0 \neq 0$ فان النظمة (S) تسمى نظمة كرامر و تقبل حلا وحيدا هو الزوج (x,y)حيث:

هذه الطريقة تسمى طريقة المحددة.

مثال: طريقة المحددة:

$$(1)\begin{cases} x + 2y = 4 \\ -x + 4y = 2 \end{cases}$$
 النظمة: \mathbb{R}^2 على في