مستوى الدراسي: TCS - TCT

عدد الساعات: 25

الدوال العددية

الثانوية التأهيلية: وادي الذهب الأستاذ: رشيد بلمو

I. عموميات حول الدوال العددية:

1. دالة عددية لمتغير حقيقى:

 \mathbb{R} جزءا من D جزءا

نسمى f دالة عددية معرفة على D (أو f دالة من D نحو \mathbb{R}), كل علاقة تربط كل عنصر x من D بعنصر وحيد من \mathbb{R} , يرمز له . f(x) بالرمز

 $f:D\to\mathbb{R}$: نتكن f دالة عددية معرفة على D نكتب التكن أ

 $x \to f(x)$

المجموعة D تسمى مجموعة تعريف الدالة f

y = f(x):لیکن x عنصرا من D, بحیث x

 γ يسمى صورة χ بالدالة γ

 γ العنصر χ يسمى سابق العنصر γ

■ الدالة f تسمى كذلك دالة عددية لمتغير حقيقى.

 $f: \mathbb{R} \to \mathbb{R}$: ليكن f الدالة العددية المعرفة كالتالى f

 $x \rightarrow f(x) = 3x^2 - 1$

 $f(\sqrt{2})$ و f(-1) و f(1): 1.

2. حدد سوابق العدد 2

2. مجموعة تعريف دةال عددية:

لتكن f دالة عددية لمتغير حقيقي x.

مجموعة تعريف الدالة f(x) هي المجموعة المكونة من جميع الأعداد الحقيقية x بحيث f(x) موجود أي f(x) قابلة للحساب. و يرمز لها . $f(x) \in \mathbb{R}$ نكافئ $x \in D_f$ بمعنى: غالبا بالرمز

 D_f ملحوظة: نقول إن f دالة عددية معرفة على A إذا كان A جزءا من

أنشطة: حدد مجموعة تعريف الدوال التالية:

$$h(x) = \sqrt{2x-4}$$
 (4 $h(x) = \frac{5x+10}{x^2-9}$ (

$$m(x) = \sqrt{2x-4}$$
 (4 $h(x) = \frac{5x+10}{x^2-9}$ (3 $g(x) = \frac{x^3}{2x-4}$ (2 $f(x) = 3x^2 - x + 1$ (1)

3. تساوى دالتين عدديتين:

D و g دالتين عديتين لهما نفس مجموعة تعريف f دالتين عديتين لهما نفس

f=g : کون الدالتان g و نکتب f(x)=g(x)کان الدالتان g من g منساویتان الدا و فقط الدالتان و و نکتب

g(x) = |x| و $f(x) = \sqrt{x^2}$ مثال: لتكن $f(x) = \sqrt{x^2}$ و الدالتين العدديتين المعرفتين بما يلي

 $D_{f}=D_{\sigma}$ لأن $D_{g}=\mathbb{R}$ لكل x من \mathbb{R} من \mathbb{R} و منه فان $\mathcal{D}_{f}=\mathbb{R}$ لاينا:

f=g و بما أن \mathbb{R} لكل x من \mathbb{R} فان f(x)=g(x) لكل من $\sqrt{x^2}=|x|$ و بما أن

4 التمثيل المبيائي لدالة عددية:

المستوى المنسوب إلى معلم (o, \vec{i}, \vec{j}) غالبا يكون متعامدا ممنظما.

 \mathbb{R} من D من D دالة عددية معرفة على جزء

التمثيل المبياني C_f للدالة f (أو منحنى الدالة f) هو مجموعة النقط $M\left(x,y
ight)$ من المستوى بحيث:

D الأفصول x يتغير في مجموعة التعريف x

• الأرتوب γ هو صورة x بالدالة f .

y = f(x) و $x \in D$

 $M\left(x,y
ight)\in C_{f}$ فان $y=f\left(x
ight)$ و $x\in D$ إذا كان

 $(o;\vec{i};\vec{j})$ العلاقة (c_f) في المعلم عادلة ديكارتية للمنحنى المعلم $(v;\vec{i};\vec{j})$

B و ليكن f المنحنى الممثل للدالة f و ليكن $f(x) = \frac{2x}{x+2}$ المعرفة كالتالي: $f(x) = \frac{2x}{x+2}$ و ليكن $f(x) = \frac{2x}{x+2}$ نقط أفاصليها هي $f(x) = \frac{2x}{x+2}$ المعرفة كالتالي: $f(x) = \frac{2x}{x+2}$ المعرفة كالتالي و $f(x) = \frac{2x}{x+2}$

 (C_f) دد أراتيب A و B علما أنهما ينتميان إلى (1

 $f\left(C_f\right)$ نقط من المستوى. هل النقط F , E التكن $G\left(1;0\right)$, $F\left(-3;5\right)$, $E\left(\frac{1}{2};\frac{2}{5}\right)$ التكن (2

 $f(x) = x^2$ نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي:

أرسم (c_f) المنحنى الممثل للدالة f في المعلم أرسم الدالة والمعلم أرسم أرسم الدالة المنحنى الدالة أرسم

5. الدالة الزوجية - الدالة الفردية:

أ) الدالة الزوجية:

تعریف:

لتكن f دالة عددية لمتغير حقيقي x و D_f مجموعة تعريفها. نقول إن f دالة زوجية إذا تحقق الشرطان التاليان:

- D_f لكل x من D_f لدينا: x لكل x من x
- f(-x) = f(x) الدينا: D_f من x لكل

لكل x من, x- تنتمي D_f يعني أن D_f متماثل بالنسبة للعدد D_f

خاصية: (التأويل المبياني لدالة زوجية)

. $(o;\vec{i};\vec{j})$ منحناها في معلم متعامد ممنظم معلم عددية لمتغير x حقيقي و لتكن التكن f

. C_f كون f دالة زوجية إذا و فقط إذا كان محور الأراتيب محور تماثل المنحنى يتكون

 $f(x) = \frac{1}{2}x^2$ نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي: $f(x) = \frac{1}{2}$ بين أن f دالة زوجية

<u>ملاحظة</u>

رائيب (على التوالي فردية) فانه يكفي إنشاء C_f على $D_f \cap \mathbb{R}^+$ و بالتماثل بالنسبة لمحور الأراتيب (على التوالي بالنسبة لمحار الأراتيب (على التوالي بالنسبة لأصل المعلم) نحصل على المنحنى C_f بكامله.

ب) الدالة الفردية:

 $(o;\vec{i};\vec{j})$ دالة عددية لمتغير حقيقي x و C_f منحناها في معلم متعامد ممنظم $(o;\vec{i};\vec{j})$.

تعریف:

 \overline{D}_f د الله عددية لمتغير حقيقي x و \overline{D}_f مجموعة تعريفها

نقول أن f دالة فردية إذا تحقق الشرطان التاليان:

 D_f لكل D_f من D_f لدينا: D_f من D_f لكل

f(-x) = -f(x) لاينا: D_f من D_f ککل

خاصية: (التأويل المبياني لدالة فردية)

. $\left(o; \vec{i}; \vec{j}\right)$ منظم متعامد معلم منظم في معلم متعامد حقيقي و التكن التكن C_f

. C_f دالة فردية إذا و فقط إذا كانت النقطة 0 مركز تماثل المنحنى . f

 $f(x) = \frac{2}{x}$ نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي:

بين أن f دالة فردية

II. تغيرات دالة عددية:

f(x) = 2x + 1 : نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي:

املا الجدول التالي: ماذا تلاحظ؟

_								. <u> </u>		
	-100	-10	-7	-3	0	2	5	10	100	
Ī										

f(x) = -3x + 2 : نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي:

املاً الجدول التالي: ماذا تلاحظ؟

							٠ ي و	
-100	-10	-7	-3	0	2	5	10	100

f(x)=3 : نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة كالتالي: 3

املا الجدول التالي : ماذا تلاحظ؟

-100	-10	-7	-3	0	2	5	10	100

- 1. تعريف: لتكن f دالة عددية معرفة على المجال I
- $f(x_1) \prec f(x_2)$ فان $x_1 \prec x_2$ فان لكل, إذا و فقط إذا كان لكل, إذا كان $x_1 \prec x_2$ فان $(x_1) \prec f(x_2)$ فان $(x_1) \prec f(x_2)$ فان $(x_1) \succ f(x_2)$
 - $f\left(x_{1}\right)=f\left(x_{2}\right)$ نقول إن الدالة f ثابتة على المجال I , إذا و فقط إذا كان لكل x_{2} و x_{1} من I لدينا: $f\left(x_{1}\right)=f\left(x_{2}\right)$
 - 2. جدول تغیرات دالهٔ التکن f دالهٔ عددیهٔ امتغیر حقیقی x و D_f مجموعهٔ تعریفها.

دراسة منحى تغيرات الدالة f, يعني تجزيء المجموعة D_f إلى أكبر مجالات ممكنة تكون فيها الدالة f تزايدية أو تناقصية قطعا أو ثابتة. و نلخص نتائج هذه الدراسة في جدول, يسمى جدول تغيرات الدالة f, بحيث السهم f (تصاعدي) يعني أن f تزايدية قطعا, و السهم (نفقي) حيني أن f ثابتة.

$f(x) = \frac{3}{2}x^2$ التكن $f(x) = \frac{3}{2}$ دالة معرفة ب:

- . f مجموعة تعريف الدالة D_f حدد
- . أدرس رتابة الدالة f على كل من المجالين $]\infty+0$ و $[0;\infty-]$ و حدد جدول تغيرات الدالة f .
 - . $\left(o;\vec{i};\vec{j}\right)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم (C_f) المنحنى الممثل الدالة الم

$\frac{1}{2}$ وتابة دالة f على مجال:

تعريف: لتكن دالة عددية معرفة على مجال [.

I نقول إن f رتيبة قطعا على المجال I إذا كانت تزايدية قطعا على I أو تناقصية قطعا على I

ااا القيم القصوى و القيم الدنيا لدالة عددية على مجال:

I عنصرا من I عنصرا من I عنصرا من I عنصرا من I

نقول إن f(a) هي القيمة القصوى للدالة f على المجال I إذا و فقط إذا كان: f(a) لكل x من I. نقول إن f(a) هي القيمة الدنيا للدالة f على المجال I إذا و فقط إذا كان: f(a) كا لكل f(a) لكل f(a) من f

. I المجال a على المجال f على المجال . f على المجال المجال .

. f فيمة قصوى أو قيمة دنيا للدالة f نقول إن f(a) مطراف للدالة أذا كان

$f(x) = x^2 + 2x + 3$ دالة معرفة ب: لتكن $f(x) = x^2 + 2x + 3$

- $f(x) = (x+1)^2 + 2$: و تأكد أن f(-1) حسب (1
 - . \mathbb{R} مهما تکن x من $f(x) \ge f(-1)$: تأکد أن (2
 - 3) ماذا تستنتج؟

 $(a \neq 0)$ $x \mapsto ax^2$ الدالة. IV

ليكن a عددا حقيقيا غير منعدم.

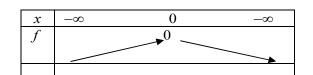
نعتبر الدالة العددية f المعرفة على \mathbb{R} بما يلي: $f(x)=ax^2$ و $f(x)=ax^2$ نعتبر الدالة العددية معلم متعامد ممنظم.

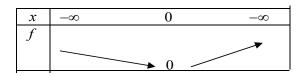
و منه f دالة زوجية. f(-x) = f(x) إذن $f(-x) = a(-x)^2$: $f(-x) = a(-x)^2$ دالة زوجية.

تغیرات f:خاصیة:

- .] $-\infty$, 0] و تناقصية قطعا على $a\succ 0$ الدالة $a\succ 0$ الدالة $a\succ 0$ و تناقصية قطعا على $a\succ 0$
- . $[-\infty, 0]$ الدالة f تناقصية قطعا على $[0, +\infty]$ و تزايدية قطعا على الدالة $a \prec 0$.

 $a \prec 0$:الحالة $a \succ 0$



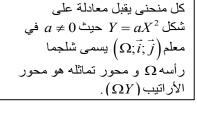


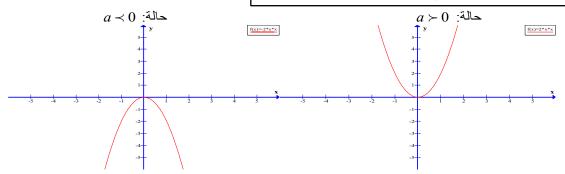
V. التمثيل المبياني للدالة t:

بما أن f دالة زوجية فانه يكفى أن نمثلها على \mathbb{R}^+ .

ثم نتمم المنحنى (P) باستعمال التماثل المحوري بالنسبة لمحور الأراتيب.

تعریف: المنحنی الممثل للدالة $a \neq 0$ $x \mapsto ax^2$ النقطة أصل المعلم تسمی رأس الشلجم. محور الأراتیب یسمی الشلجم.





$(a \neq 0)$ $x \mapsto \frac{a}{x}$ الدائة. VI

ليكن a عددا حقيقيا غير منعدم

 $(o;\vec{i};\vec{j})$ الدالة العددية للمتغير الحقيقي x و المعرفة بما يلي: $f(x) \mapsto \frac{a}{x}$ الدالة العددية للمتغير الحقيقي و المعرفة بما يلي: $f(x) \mapsto \frac{a}{x}$

 $D_f = \left] - \infty, 0 \right[\bigcup \left] 0, + \infty \right[$. هي f الدالة f مجموعة التعريف: مجموعة التعريف:

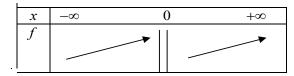
زوجية الدالة f: ليكن x من D_f , لدينا $x \in D_f$ و f(x) = f(x) إذن f دالة فردية.

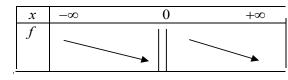
<u>تغيرات f:</u>

خاصية:

- $]-\infty,0[$ و $]0,+\infty[$ و الدالة f تناقصية قطعا على كل من المجالين $a\succ 0$ فان الدالة $a\succ 0$
- .]- ∞ ,0[و]0,+ ∞ [و]0,+ ∞ فان الدالمة f تز ايدية قطعا على كل من المجالين a

a < 0 <u>ILALLE:</u> a > 0



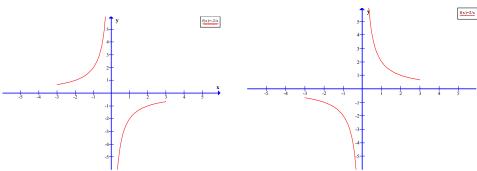


التمثيل المبياتي للدالة f : بما أن f دالة فردية فانه يكفي أن نمثل f على $]0,+\infty[$, ثم نتمم منحنى الدالة f على باستعمال التماثل المركزى الذي مركزه f أصل المعلم.

تعريف

y=0 منحنى الدالة $x\mapsto a$ يسمى هذلو لا مركزه a أصل المعلم و مستقيماه المقاربان هما x=0 و

 $a \prec 0$:الحالة $a \succ 0$ عالة:



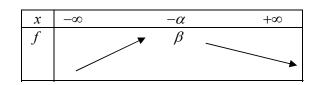
$x \mapsto ax^2 + bx + c$ التمثيل المبيائي و تغيرات الدالة: \mathbf{V} \mathbf{V} المستوى منسوب إلى معلم متعامد ممنظم $(o; \vec{i}; \vec{j})$.

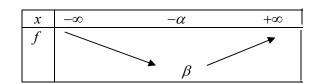
 $a \neq 0$ دم أعداد حقيقية مع $a \neq 0$ حيث $a \neq 0$ حيث $a \neq 0$ على $a \neq 0$ بما يلي: $a \neq 0$ بما يلي: $a \neq 0$ حيث $a \neq 0$ حيث $a \neq 0$

- (الشكل القانوني) $f(x) = a(x+\alpha)^2 + \beta$ بحيث: $\theta \in \alpha$ بحيث: $\theta \in \alpha$
 - $(D): x = -\alpha$ و محوره $S(-\alpha; \beta)$ و منحنى الدالة f يسمى شلجما رأسه

نقبل النتائج التالية: $a \succ 0$ تغيرات $a \succ 0$

a < 0 :الحالة





$f(x) = x^2 + 4x + 3$ دالة معرفة ب: $f(x) = x^2 + 4x + 3$

$$(f(x) = a(x+\alpha)^2 + \beta)$$
 بين أن: $f(x) = (x+2)^2 - 1$ (يسمى الشكل القانوني

مدد جدول تغيرات الدالة f.

حدد نقط تقاطع $\left(C_{f}
ight)$ المنحنى الممثل للدالة f مع محور الأفاصيل.

دد نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور الأراتيب.

 $(o;\vec{i},\vec{j})$ رسم (c_f) المنحنى الممثل للدالة f و المستقيم (c_f) الذي معادلته (c_f) في معلم متعامد ممنظم (c_f) .

(D) و (C_f) عدد نقط تقاطع (4

$f(x) = \frac{ax+b}{cx+d}$ التمثيل المبياني و تغيرات الدالة: VAI

 $(o;\vec{i};\vec{j})$ المستوى المنسوب إلى معلم متعامد ممنظم

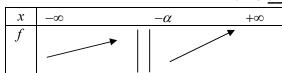
 $f(x) = \frac{ax+b}{ax+d}$ لتكن f الدالة العددية المعرفة بما يلي:

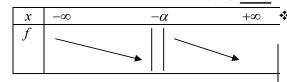
. $x \neq \frac{d}{c}$ و $ad - bc \neq 0$ عداد حقیقیة و $ad - bc \neq 0$ و $ad - bc \neq 0$ عداد حقیقیة و

نقبل النتائج التالية:

منحنى الدالة f هو صورة الهذلول (H) الذي معادلته $y=rac{k}{2}$ بالإزاحة التي متجهتها (H) الذي معادلته $y=rac{k}{2}$ جدول تغيرات f :

 $k \succ 0$ الحالة:





 $(D_2): y = \beta$ و مقارباه $x = -\alpha$ و مقارباه $S(-\alpha; \beta)$ و مقاولا مرکزه $S(-\alpha; \beta)$

$f(x) = \frac{2x+1}{x-1}$: نعتبر الدالة f المعرفة كالتالي: نعتبر الدالة أ

على الشكل المختصر (1
$$f(x)$$
 على الشكل المختصر (1

عدد نقط تقاطع منحنى الدالة f مع محوري المعلم 4

f الدالة ff أرسم (C) التمثيل المبياني للدالة (f