مستوى الدراسي: TCS - TCT

عدد الساعات: 15

المسابع المثلثي الجزء 2

الثانوية التأهيلية: وادي الذهب الأستاذ: رشيد بلمو

I. التمثيل المبياني للدالتين cos و المبياني الم

در اسة و تمثيل الدالة sin :

 $|0;2\pi|$: كنشاط يقوم التلاميذ بملا الجدول التالي و رسم التمثيل المبياني على المجال : $y = \sin x$

х	Q	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{3\pi}{2}$		2π	
ν	η.	0.5	1	0.5	n	0.5	1	_0.5	0	

2-ماذا تلاحظ بالنسبة لمنحنى الدالة sin ؟ أصغير قيمة ؟ أكبر قيمة ؟

 \mathbb{R} : على: 3-بنفس الطريقة نرسم التمثيل المبياني على:

دراسة وتمثيل الدالة cos:

 $[0;2\pi]$: و كنشاط يقوم التلاميذ بملا الجدول التالي و رسم التمثيل المبياني على المجال $y=\cos x$

2-ماذا تلاحظ بالنسبة لمنحنى الدالة cos ؟ أصغير قيمة ؟ أكبر قيمة ؟

 \mathbb{R} : على: 3-بنفس الطريقة نرسم التمثيل المبياني على:

المعادلات المثلثية الأساسية:

(E): $\cos x = a$: فاصية $a \in \mathbb{R}$: 1غاصية

 \mathbb{R} اذا كان : 1>a أو a<-1 فان المعادلة a>a ليس لها حلو لا في a>1 .

 $\cos x = \cos x_0$ بحیث $x_0 \in \mathbb{R}$ اذا کان : $1 \le a \le 1$ فانه یوجد

 $k\in\mathbb{Z}$ وحلول المعادلة $x_0+2k\pi$ في $x_0+2k\pi$. هي الأعداد الحقيقية : $x_0+2k\pi$ أو (E): $\cos x=a$

 $\cos x = \frac{1}{2}$: المعادلة (1) حل في المعادلة

 $\cos x = \frac{1}{2}$: المعادلة $]-\pi,\pi]$ حل في المجال (2

(E): $\sin x = a$: و نعتبر المعادلة $a \in \mathbb{R}$: خاصية

 \mathbb{R} اذا كان : $a \succ 1$ أو $a \leftarrow -1$ فان المعادلة : $a \succ 1$ ليس لها حلو لا في

 $\sin x = \sin x_0$ بحیث $x_0 \in \mathbb{R}$ اذا کان : $1 \le a \le 1$

 $k\in\mathbb{Z}$ حيث $\pi-x_0+2k\pi$ أو $x_0+2k\pi$ عيث $x_0+2k\pi$ عيث . \mathbb{R} عيث في الأعداد الحقيقية

 $\sin x = \frac{\sqrt{2}}{2}$: المعادلة (1) حل في المعادلة

 $\sin x = \frac{\sqrt{2}}{2}$: المعادلة $]-\pi,\pi]$: حل في المجال [2]

 $k\in\mathbb{Z}$ يوجد $x_0+k\pi$ بحيث $x_0+k\pi$; وحلول المعادلة (E) في \mathbb{R} . هي الأعداد الحقيقية

 $k \in \mathbb{Z}$ أو حيث $x_0 + k\pi$: هي الأعداد الحقيقية

 $\tan x = 1$: المعادلة \mathbb{R} حل في

$$x$$
 عددین حقیقین x و x عددین اجل کل عددین حقیقین x و $x = y + 2k\pi$ از $\cos x = \cos y$ $\cos x = \cos y$ $\cos x = \sin y$

$$k \in \mathbb{Z}$$
 $\begin{cases} x = y + 2k \pi \\ x = (\pi - y) + 2k \pi \end{cases}$ کافئ أو $\sin x = \sin y$

$$\cos x = -\frac{1}{2}$$
 و $\sin x = -\frac{\sqrt{3}}{2}$ المعادلة : \mathbb{R} عثال: 1)حل في

$$\cos x = -\frac{1}{2}$$
 و $\sin x = -\frac{\sqrt{3}}{2}$: المعادلة $]-\pi,\pi$]: المجال (2

الل المعادلات الخاصة:

$$x=2k\pi$$
 تكافئ $\cos x=1$ $k\in\mathbb{Z}$ $x=\frac{\pi}{2}+\pi$ k تكافئ $\cos x=0$ $x=(2k+1)\pi$ تكافئ $\cos x=-1$ $x=\frac{\pi}{2}+2\pi$ تكافئ $\sin x=1$ $(k\in\mathbb{Z})$ $x=k\pi$ تكافئ $\sin x=0$ $x=-\frac{\pi}{2}+2k\pi$ تكافئ $\sin x=-1$

 $\cos x \left(2\sin x - \sqrt{3}\right) = 0$: حل في ال $[-\pi, 2\pi]$ معادلة : $\sin x = 0$ و تمرين 1: حل في ال

IV. متراجحات مثلثية: حل هذه المتراجحات اعتمادا على الدائرة المثلثية و نمثل على الدائرة المثلثية حلول المتراجحة:

$$S = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$
: المتراجحة: $\frac{1}{2}$ $\sin x \ge \frac{1}{2}$ المتراجحة: $[0, 2\pi]$ المتراجحة: مثال المتراجحة: المجال

$$\sin x \le -\frac{1}{2}$$
 المتراجحة: $]-\pi,\pi$]: المجال على المجال المجال

$$S = \left[\frac{\pi}{4}, \frac{\pi}{4} \right]$$
: حل في المجال : $\left[-\pi, \pi \right]$ المتراجحة: $\left[-\pi, \pi \right]$ المجال : عثال 2: حل في المجال : $\left[-\pi, \pi \right]$

$$\cos x \leq \frac{1}{2}$$
: المتراجحة المجال : $\left[\frac{\pi}{2}, \pi\right]$

$$(4 \quad \sin x < 0 \ (3 \quad 2\cos x + \sqrt{3} \ge 0 \ (2 \quad \cos x < 0 \ (1:تمرین: حل في المجال: $[-\pi, 2\pi]$ المتراجحاات: $\sqrt{2}\sin x < 1 \ (5 \quad \sin x \ge 0$$$

$$\tan x \ge 1$$
 : مثال 3π المتراجحة: 3π المجال 3π المجال $S = \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \cup \left[\frac{5\pi}{4}, \frac{3\pi}{2}\right]$ الجواب $S = \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \cup \left[\frac{5\pi}{4}, \frac{3\pi}{2}\right]$

$$\tan x < -\sqrt{3}$$
 : حل في المجال [$-\pi,\pi$] : المتراجحة

V. علاقات sin في مثلث:

$$BC=a$$
 و $AC=b$ و $AB=c$ و ABC مثلث بحيث ABC او نفترض أن ABC قائم الزاوية في A اذن : A ومنه : ABC انقترض أن ABC قائم الزاوية في A اذن : A قائم الزاوية في ABC ومنه :
$$\sin \hat{B} = \frac{b}{a} \Leftrightarrow a = \frac{b}{\sin \hat{B}} \Rightarrow \frac{a}{\sin \hat{A}} = a$$
 و لدينا كذلك :
$$\sin \hat{A} = \frac{b}{\sin \hat{A}} = \frac{c}{\sin \hat{C}} \Rightarrow \sin \hat{C} = \frac{c}{\sin \hat{C}}$$

و هذه النتيجة تبقى صحيحة بالنسبة لمثلث عادي :

 $\frac{a}{\sin\hat{A}} = \frac{b}{\sin\hat{B}} = \frac{c}{\sin\hat{C}}$ فان BC = a و AC = b و AC = b و AB = c فان ABC مثلث بحیث ABC فان خاصیه زاذا کان

$$BC=4cm$$
 تمرین : $\hat{B}=\frac{\pi}{3}$ و $\hat{A}=\frac{\pi}{4}$ و ABC تمرین : ABC مثلث بحیث : $ABC=a$ و $AC=b$ و $AC=b$

$$\cos x = \frac{\sqrt{3}}{2}$$
 : المعادلة : $\frac{\sqrt{3}}{2}$: $\frac{\sqrt{3}}{2}$: المدلة : $\frac{\sqrt{3}}{2}$: المدلة : $\frac{\sqrt{3}}{2}$: المدلة : $\frac{\sqrt{3}}{2}$: المدلة : $\frac{\sqrt$

BC=a و $\hat{C}=Acm$ و $\hat{C}=Acm$ و $\hat{C}=Acm$ و $\hat{C}=Acm$ و $\hat{C}=Acm$ و $\hat{C}=Acm$ و $\hat{C}=Acm$