مادة الرياضيات

المستوى: الجذع مشترك علمي الأستاذ: عثماني نجيب مذكرة رقم/12

مذكرة رقم 12 : ملخص لدرس: الجداء السلمبي

الأهداف والقدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- يـتم تقـديم الجـداء السـلمي وخاصـياته انطلاقــا مــن	- التعبير عن المسافة والتعامد بواسطة	- تعريف وخاصيات؛
الإسقاط العمودي.	الجداء السلمي.	- الصيغة المثلثية؛
- ينبغي التأكيد على دور هذه الأداة في تحديد بعض	- استعمال البداء السلمي في حل مسائل	- تعامد متجهتين؛
المحلات الهندسية في المستوى وفي حساب الأطوال	هندسية.	- بعض تطبيقات الجداء السلمى:
	- استعمال مبر هنة الكاشي ومبر هنة	. العلاقات المترية في مثلثُ قائم الزاوية؛
 تعتبر الصيغة التحليلية للجداء السلمي خارج المقرر. 	المتوسط لحل تمارين هندسية.	. مبر هنة المتوسط؛
		. مبر هنة الكاشي.

تعاریف:

تعريف 1: الجداء السلمي لمتجهتين:

 \vec{v} و \vec{v} متجهتین من المستوی بحیث: $\vec{u} = \overrightarrow{AB}$ و $\vec{v} = \overrightarrow{AC}$ و $\vec{v} = \overrightarrow{AB}$ على المستقیم (\vec{AB}).

الجداء السلمي للمتجهتين \vec{v} هو العدد الحقيقي الذي يرمز له بالرمز \vec{v} و المعروف بما يلي:

• إذا كانت \overrightarrow{AB} و \overrightarrow{AH} لهما نفس المنحى فان:

 $u \cdot v = AB \times AH$

ا فان: \overrightarrow{AH} و \overrightarrow{AH} الهما منحيان متعاكسان فان:

 $\vec{u} \cdot \vec{v} = -AB \times AH$

 $\vec{u} \cdot \vec{v} = AB \cdot AC$ و نكتب $\vec{u} \cdot \vec{v} = AB \cdot AH$ و نكتب

تعريف 2: الصيغة المثلثية للجداء السلمى:

 $\vec{v} = \overrightarrow{AC}$ فان: $\vec{v} = \overrightarrow{AB}$ فير منعدمتين و \vec{v} هو قياس الزاوية \vec{BAC} حيث غير منعدمتين و \vec{v} فان

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \stackrel{\vdots}{=} \vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \alpha$$

 $\vec{u}\cdot\vec{v}$ مثال: ليكن $\frac{\pi}{4}$ قياسا لزاوية المتجهتين \vec{u} و \vec{v} حيث: $2\sqrt{2}$ حيث عياسا لزاوية المتجهتين أحسب \vec{v}

 $\overrightarrow{AB} \cdot \overrightarrow{AC}$ المنا متساوي الأضلاع طول ضلعه يساوي 6. أحسب \overrightarrow{ABC} عثاثا متساوي الأضلاع طول ضلعه يساوي 6.

 $\cos\left(\widehat{FEG}\right)$ احسب EF و EG=-6 و EG=3 و EF=5 احسب EF احسب EFG تمرین EF

 $\overrightarrow{AB} \cdot \overrightarrow{AC}$ احسب $\overrightarrow{BAC} = \frac{2\pi}{2}$ و AC = 4 و AB = 3 احسب ABC احسب ABC

וו. $\frac{\dot{c}}{\dot{c}}$ בושים ולברום וועלمט: \dot{v} בוצט \dot{v} שני \dot{v} לוגלי הדבאוד:

- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \blacksquare$
- . \mathbb{R} مهما یکن $\vec{u} \cdot (\vec{kv}) = \vec{ku} \cdot \vec{v}$

$$(\vec{u} - \vec{v})^2 = ||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$$

$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

 $\|\vec{u}\| = \sqrt{\vec{u}^2}$ اذن $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2$ ملحظة: $\vec{u} \cdot \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$ اذن $\vec{u} \cdot \vec{u} \cdot \vec{u} = \|\vec{u}\|^2$ ملحظة:

 $AB = \sqrt{\overrightarrow{AB}^2}$ و اذا کانت $\overrightarrow{u} = \overrightarrow{AB}$ فان

 $||\vec{u} + \vec{v}||^2$ و $||\vec{u} + \vec{v}||^2$ و $||\vec{u} + \vec{v}||^2$ و $||\vec{u}|| = 3$ و $||\vec{v}|| = 3$ و $||\vec{v}|| = 5$

 $(3\vec{u}-2\vec{v})\cdot(\vec{u}+5\vec{v})$

 $\vec{u} \perp \vec{v}$ و نكتب $\vec{u} \cdot \vec{v} = 0$ و نقط إذا كان $\vec{u} \cdot \vec{v} = \vec{u}$ و نكتب خاصية

 $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ ينتيجة: $(AB) \perp (CD) \perp (CD)$ اذا و فقط إذا كان

المسقط العمودي النقطة ABC مثلثا و A المسقط العمودي النقطة A على ABC .

Aفان: في Aفان في Aفان

$$AC \times AB = AH \times BC$$
 (2
 $AH^2 = HB \times HC$ (4

(مبر هنة فيتاغورس)
$$AB^2 + AC^2 = BC^2$$
 (1 $AB^2 = BH \times BC$ (3 $BA^2 = BH \times BC$ (3

براهين :

 $\cos \hat{A} = \frac{AB}{AC}$ (ABC) : باعتبار المثلث (BC) ليكن ABC مثلثا و ABC المسقط العمودي للنقطة ABC على

$$AC^2 = CH \times BC$$
 ومنه $\frac{AB}{AC} = \frac{BH}{AB}$ ومنه $\cos \hat{B} = \frac{BH}{AB}$ (ABH) : و باعتبار المثلث

$$\frac{AC}{BC} = \frac{AH}{AB}$$
 ومنه $\sin \hat{B} = \frac{AH}{AB}$ ومنه $\sin \hat{B} = \frac{AH}{AB}$ ومنه $\sin \hat{B} = \frac{AC}{BC}$ ومنه $\sin \hat{B} = \frac{AC}{BC}$ (4BC) باعتبار المثلث : (4

 $AC \times AB = AH \times BC$

ABC على ABC مثلث قائم الزاوية في A و H المسقط العمودي للنقطة A على ABC

BC = 5cm gamma AB = 2cm : data BH gamma AC : AC

IV. مبرهنة الكاشى:

 $BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos\left(\widehat{BAC}\right)$ خاصية: ليكن ABC مثلثا لدينا

نتائج:

$$\cos\left(\widehat{BAC}\right) = \frac{AB^2 + AC^2 - BC^2}{2AB \times AC}$$
.1

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)$$
 و منه $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$.2

هناك علاقتين مماثلتين للعلاقة الأولى:

$$AC^2 = BA^2 + BC^2 - 2AB \times BC \times \cos\left(\widehat{ABC}\right) \quad \text{o} \quad AB^2 = CA^2 + CB^2 - 2CA \times CB \times \cos\left(\widehat{ACB}\right)$$

AC = 8cm و AB = 5cm مثلثا بحيث : AB = 8cm و ABC = 8cm

 $\cos(\widehat{ACB})$ و BC: أحسب

 $AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$ لدينا: BC لدينا: مثلثا و I مثلثا و I مثلثا و القطعة BC

BC و BC=4cm و BC=3cm و BC=3cm و AB=3cm و ABC=6cm

http://xyzmath.voila.net