Classe:	2Bac.SVT
Année scolaire	2022/2023

Devoir Maison N° 3
1er Semestre

Lycée : Prince Moulay Abdellah
Prof : Rachid BELEMOU

Exercice1:

1) Montrer que : $\ln(25) - \ln(49) - 4\ln(\sqrt{5}) + 4\ln(\sqrt{7}) + \ln(e^2) = 2$

2) Résoudre dans \mathbb{R} l'équation suivante : (E) : $\ln(2x-3) + \ln(x+1) = \ln(x+9)$

3) Résoudre dans \mathbb{R} l'inéquation suivante : (I) : $\ln(x^2 - x - 2) \le \ln(x + 1)$

Exercice2:

Partie I:

On considère la fonction g définie sur l'intervalle $]0;+\infty[$ par : $g(x) = 2x^2 + 1 - \ln x$

1) Calculer $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to 0^+} g(x)$

2) Calculer g'(x) puis dresser le tableau de variations de g

3) Déduire que g(x) > 0; $\forall x \in [0; +\infty)$

Partie II:

Soit f la fonction définie sur l'intervalle]0;+ ∞ [par : $f(x) = 2x - 2 + \frac{\ln x}{x}$

et (C_f) sa courbe représentative dans un repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$.

1) Calculer $\lim_{x\to 0^+} f(x)$ puis interpréter le résultat graphiquement.

2) a) Calculer $\lim_{x \to +\infty} f(x)$

b) Montrer que la droite (Δ) d'équation y = 2x - 2 est une asymptote oblique à (C_f) au voisinage de $+\infty$

c) Déterminer la position relative de ($C_{\rm f}$) et la droite (Δ)

3) a) Vérifier que $f'(x) = \frac{g(x)}{x^2}$; $\forall x \in]0; +\infty[$

b) Dresser le tableau de variation de la fonction f sur l'intervalle $]0;+\infty[$.

4) Donner l'équation de la tangente (T) à (C_f) au point d'abscisse 1

5) Tracer la droite (Δ) et la courbe de (C_f) dans le repère $(O; \vec{i}; \vec{j})$.

Exercice3:

Déterminer les fonctions primitives de f sur l'intervalle I dans chaque cas :

1)
$$f(x) = \frac{x+2}{(2x^2+8x+9)^5}$$
 et $I = \mathbb{R}$

2)
$$f(x) = \frac{4x}{\sqrt{2x^2 + 1}}$$
 et $I = \mathbb{R}$

3)
$$f(x) = \frac{x-1}{x^2 - 2x + 3}$$
 et $I = \mathbb{R}$