Classe:	2Bac.SVT	Devoir Maison N° 2		Prince Moulay Abdellah
Année scolaire	2022/2023	1 ^{er} Semestre	Prof:	Rachid BELEMOU

Exercice1:

On considère la fonction f définie par :

$$f(x) = x + 2 - 2\sqrt{x - 1}$$

On note (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$

Partie I:

- 1) Déterminer D_f.
- 2) a) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$
 - b) Montrez que $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$ et que $\lim_{x \to +\infty} (f(x) x) = -\infty$
 - c) Déduisez la branches infinies de (C_f) .
- 3) a) Etudier la dérivabilité de la fonction f à droite en 1
 - b) Interprétez graphiquement le résultat.
- 4) a) Montrez que $f'(x) = \frac{\sqrt{x-1}-1}{\sqrt{x-1}} \quad \forall x \in]1; +\infty[$
 - b) Etudier les variations de f puis dressez le tableau de variations de f.
- 5) a) Montrer que $f(x) x = 2(1 \sqrt{x-1}) \quad \forall x \in]1; +\infty[$
 - b) Etudier la position relative de (C_f) et la droite (D) d'équation y = x
- 6) Donner l'équation cartésienne de la tangente (T) à (C_f) au point d'abscisse 2
- 7) Tracez (C_f)

Partie II:

On considère la suite (U_n) définie par $\begin{cases} U_0 = 3 \\ U_{n+1} = f(U_n); \forall n \in \mathbb{N} \end{cases}$

- 1) Montrer que $U_n > 2$; $\forall n \in \mathbb{N}$
- 2) Montrer que (U_n) est décroissante
- 3) Déduire que (U_n) est convergente et calculer sa limite

Exercice2:

Soit (U_n) la suite définie par $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{5U_n}{2U_n + 3}; \forall n \in \mathbb{N} \end{cases}$

- 1) montrer que $U_n > 1 \quad \forall n \in \mathbb{N}$
- 2) a) Vérifier que $U_{n+1} U_n = \frac{-2U_n(U_n 1)}{2U_n + 3}$
 - b) Déduire que (U_n) est décroissante et convergente
- 3) on considère la suite (V_n) définie par $V_n = \frac{U_n 1}{U_n}$ $\forall n \in \mathbb{N}$
 - a) montrer que (V_n) est géométrique de raison $q = \frac{3}{5}$
 - b) calculer V_n en fonction de n
 - c) Déduire U_n en fonction de n
 - d) calculer $\lim_{n\to+\infty} U_n$