Classe:	2Bac.SVT	Devoir Maison N° 1	Lycée :	Prince Moulay Abdellah
Année scolaire	2022/2023	1 ^{er} Semestre	Prof:	Rachid BELEMOU

1) Simplifier le nombre suivant : $A = \frac{\sqrt[3]{\sqrt{8} \times \sqrt[4]{32}}}{2^{\frac{1}{2}} \times 12^{\frac{1}{6}A}}$

2) Calculer les limites suivantes :

$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^3 + 2x + 7} + 5x}{x} \qquad ; \qquad \lim_{x \to 1} \frac{\sqrt[3]{x + 7} - 2}{x - 1}$$

3) Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1): \sqrt[3]{x^2 + 2x + 1} - 6\sqrt[3]{x + 1} + 8 = 0 \text{ (remarquer que } x^2 + 2x + 1 = (x + 1)^2 \text{) }; \quad (E_2): (1 + 2x)^5 = 32$$

Exercice2:

On considère la fonction f définie sur \mathbb{R} par :

$$\begin{cases} f(x) = \frac{4x^2 - 3x - 1}{x - 1}; x \neq 1 \\ f(1) = 5 \end{cases}$$

- 1) Etudier la continuité de la fonction f en $x_0 = 1$.
- 2) a) Etudier la dérivabilité de la fonction f en $x_0 = 1$.
 - b) Donner l'interprétation géométrique du résultat.

Exercice3:

 $g(x) = x^3 - 3x^2 + 2$ Soit g la fonction définie sur \mathbb{R} par :

- 1) Vérifier que $\forall x \in \mathbb{R}; g'(x) = 3x(x-2)$
- 2) Tracer le tableau de variations de g sur \mathbb{R} .
- 3) Monter que l'équation g(x) = 0 admet une solution unique α sur l'intervalle [2;4]
- 4) Donner un encadrement de α d'amplitude 0,5

Exercice4:

 $h(x) = \sqrt{\frac{x-3}{x+1}}$ Soit h la fonction définie par :

- 1) Déterminer D_h
- 2) a) Etudier la dérivabilité de la fonction h à droite en $x_0 = 3$.
 - b) Donner l'interprétation géométrique du résultat.

3) Vérifier que
$$\forall x \in]-\infty; -1[\cup]3; +\infty[; h'(x) = \frac{2}{(x+1)^2 \sqrt{\frac{x-3}{x+1}}}$$

- 4) Tracer le tableau de variations de h sur D_h
- 5) Soit g la restriction de h sur $]-\infty;-1[$
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer
 - b) Calculer $g\left(\frac{-3}{2}\right)$ et $\left(g^{-1}\right)(3)$
 - c) Déterminer g^{-1} pour tout x de J