Classe:	2Bac.SVT	Devoir Maison N° 2	Lycée :	Prince Moulay Abdellah
Année scolaire	2022/2023	2 ^{eme} Semestre	Prof:	Rachid BELEMOU

Exercice 1 (6.5 pts)			
1) Étudier l'orthogonalité de les plans (P_1) et (P_2) dans les cas suivantes :			
a) $(P_1): 2x - y + 3z + 1 = 0$; $(P_2): -x + y + z - 2 = 0$			
b) $(P_1): -2x + 2y + z + 1 = 0$; $(P_2): x - 2y + 2z - 2 = 0$			
2) Déterminer la valeur de m pour que $(P_1) \perp (P_2)$ le cas suivant :			
$(P_1): 2x + y + mz + 1 = 0$; $(P_2): 3x - 2my - z - 2 = 0$			
3) Déterminer l'équation du plan (P) passant par A et de vecteur normal \vec{n} avec :			
$A(1;2;3) \; \; ; \; \; \vec{n}(-1;2;0)$	1.25		
4) Déterminer l'équation du plan tangente à la sphère (S) de centre $\Omega(3;1;-1)$ au point $B(2;1;0)$	1.5		
Exercice 2 (4.5 pts)			
1) Soit (S) la sphère de centre $\Omega(1;2;3)$ et de rayon $R=\sqrt{3}$ et le plan (P) d'équation :			
(P): x+y-z+3=0			
a) Calculer $d(\Omega; (P))$, en déduire que (P) coupe la sphère (S) en un seul point H .	0.75		
b) Soit (Δ) la droite passant par Ω et perpendiculaire au plan (P) ,			
$\int x = 1 + t$			
Montrer qu'une représentation de (Δ) est : (Δ) $\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 3 - t \end{cases}$	0.75		
	1		
c) En déduire que les coordonnés de H sont $H(0;1;4)$			
2) Étudier l'intersection de la sphère (S) et la droite (Δ) dans le cas suivante :			
$\begin{cases} x = 1 + t \\ 1)(S) \cdot (x - 1)^2 + (y - 2)^2 + (z - 3)^2 - 3 \cdot (A) \end{cases} $	$\begin{vmatrix} 2 \end{vmatrix}$		
1) $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 3$; (Δ) $\begin{cases} x = 1+t \\ y = 2+t / t \in \mathbb{R} \\ z = 3-t \end{cases}$			
Exercice 3 (4.5 pts)			
1) a) Donnée la solution général de l'équation différentielle : (E_1) : $3y' - 6y' + 12 = 0$.	0.75		
b) Déterminer la solution de (E_1) qui vérifier : $y(0) = 5$.	0.75		
2) a) Donnée la solution général de l'équation différentielle : (E_2) : $y'' - 6y' + 8y = 0$	1.5		
b) Déterminer la solution particulier de l'équation : (E_2) qui vérifier la condition : $\begin{cases} y(0) = 3 \\ y'(0) = 8 \end{cases}$			
Exercice 4 (4.5 pts)			
Soit g la fonction définie sur $[0;2]$ par : $g(x)=xe^x$ et (C_g) sa courbe représentative dans un repère orthonormé $(O;\vec{i};\vec{j})$ $(\vec{i} = j =1cm)$.			
1) En utilisant la méthode de l'intégration par parties montrer que : $\int_0^2 g(x)dx = e^2 + 1$			
2) Déduire la valeur moyenne de g sur l'intervalle [0;2],			
3) En utilisant la méthode de l'intégration par parties montrer que : $\int_0^2 x^2 e^{2x} dx = \frac{5e^4 - 1}{4}$			
4) En déduire la valeur du volume de solide engendré par la rotation de la courbe (C_g) sur $[0;2]$ autour de l'axe des abscisses, exprimer en unité de volume			