[:] Prince Moulay Abdellah

EQUATIONS DIFFERENTIELLES

Niveau: 2 BAC-PC-SVT

Année : 2022-2023

Approche:

Lycée

- f est une fonction; on la note par y.
- f'est sa dérivée ; on la note par y'.
- L'écriture f'(x) = af(x) + b on la note par y' = ay + b on l'appelle équation différentielle linéaire de première degré de coefficients constant a et b.
- Toute fonction g dérivable qui vérifie cette équation différentielle (g'(x) = ag(x) + b) on l'appelle solution particulière de l'équation différentielle.
- Résoudre une équation différentielle c'est de trouver toutes les fonctions qui vérifie l'équation différentielle (c'est-à-dire de trouver la solution générale).
- Le programme se limite aux équations différentielles de la formes .
 - 1. y' = ay + b avec a et b de \mathbb{R}
 - y''+ay'+by=0 avec a et b de \mathbb{R} .

Equation différentielle de la forme y' = ay + b a et b de \mathbb{R} :

a. Propriété:

Soit l'équation différentielle (E): y' = ay + b a et b de \mathbb{R} .

- Cas général $a \neq 0$: l'ensemble des solutions de l'équation différentielle (E) sont les fonctions de la forme: $f(x) = \alpha \times e^{ax} - \frac{b}{a}$ avec $\alpha \in \mathbb{R}$.
- Cas particulier 1: a = 0 et b = 0 l'équation (E) est y' = 0 l'ensemble des solutions de l'équation différentielle (E) sont les fonctions de la f(x) = c.
- Cas particulier 2: a = 0 et $b \neq 0$ l'équation (E) est y' = b l'ensemble des solutions de l'équation différentielle (E) sont les fonctions de la $f(x) = bx + \alpha$ avec $\alpha \in \mathbb{R}$.

b. Exemples:

Résoudre les équations différentielles suivantes :

1.
$$y' = 4y + 5$$
 2. $y' = -3y$ 3. $y' = 7$ 4. $y' = 0$

c. Propriété:

l'équation différentielle (E) : y' = ay + b $a \ne 0$ et b de \mathbb{R} .

Il existe une et une seule fonction f(x) qui est solution de l'équation (E) et qui vérifie la condition initiale $f(x_0) = y_0$ avec x_0 et $y_0 \in \mathbb{R}$.

Déterminer la solution f(x) de l'équation différentielle (E): y' = 4y + 5 qui vérifie la condition initiale f(-7) = 11

Equation différentielle de la forme y''+ay'+by=0 a et b de \mathbb{R} :

- a. Définition :
 - Equation différentielle de la forme y''+ay'+by=0 a et b de \mathbb{R} tel que l'inconnue c'est la fonction y avec y' sa dérivée première et y'' sa dérivée seconde s'appelle équation différentielle linéaire d'ordre 2 à coefficients constant sans seconde membre.
 - L'équation $r \in \mathbb{C}$: $r^2 + ar + b = 0$ s'appelle l'équation caractéristique de l'équation : y'' + ay' + by = 0
 - Le nombre $\Delta = a^2 4b$ s'appelle le discriminant de l'équation caractéristique.

•

<u>b.</u> Propriété :

solution générale de l' équation différentielle (E): y''+ay'+by=0 a et b de $\mathbb R$ dépend du signe de Δ .

• 1^{er} cas : $\Delta > 0$:

Donc l'équation caractéristique a deux solutions réelles sont $: r_1$ et r_2 . D'où la solution générale de (E) sont les fonctions de la forme $: y(x) = \alpha e^{r_1 x} + \beta e^{r_2 x}$; α et β de $\mathbb R$.

• 2^{er} cas : $\Delta = 0$

Donc l'équation caractéristique a une solution réelle est r_1 . D'où la lution générale de (E) sont les fonctions de la forme : $f(x) = (\alpha x + \beta)e^{r_1x}$; α et β de $\mathbb R$.

• $3^{\text{ième}}$ cas : $\Delta < 0$:

Donc l'équation caractéristique a deux solutions complexes conjuguées sont : $\mathbf{r}_1 = \mathbf{p} + \mathbf{q}\mathbf{i}$ et $\mathbf{r}_2 = \mathbf{r}_1 = \mathbf{p} - \mathbf{q}\mathbf{i}$. D'où la solution générale de (\mathbf{E}) sont les fonctions de la forme : $\mathbf{f}(\mathbf{x}) = (\alpha\cos(\mathbf{q}\mathbf{x}) + \beta\sin(\mathbf{q}\mathbf{x}))\mathbf{e}^{\mathbf{p}\mathbf{x}}; \alpha \text{ et } \beta \text{ de} \qquad .$

- **c.** Exemples:
 - 1. Résoudre l'équation différentielle (E): y''-5y'+6y=0.
 - 2. Résoudre l'équation différentielle (E): y''+y'+y=0.
 - 3. Résoudre l'équation différentielle (E): y''-4y'+4=0.