Équation du 1er degré

On isole l'inconnue dans une équation du 1^{er} degré, en développant ou en multipliant par de dénominateur commun si nécessaire. On obtient alors :

$$ax = b$$

- Si $a \neq 0$, une solution $x = \frac{b}{a}$ d'où $S = \left\{ \frac{b}{a} \right\}$
- Si a = 0 et $b \neq 0$, impossible d'où $S = \emptyset$.
- Si a=0 et b=0, toujours vrai d'où $S=\mathbb{R}$

Équation produit

Lorsque l'équation est de degré supérieur à 1, on annule le second membre.

Si le premier membre peut se factoriser en facteurs du 1^{er} degré, on applique l'intégrité de la multiplication :

$$ab = 0 \Leftrightarrow a = 0 \text{ ou } b = 0$$

En cas d'égalité de deux carrés, on applique la règle

$$a^2 = b^2 \Leftrightarrow a = b \text{ ou } a = -b$$

Équation quotient

Si l'inconnue apparaît au dénominateur :

- ullet On détermine l'ensemble de définition D_f .
- En cas d'égalité de deux fractions on effectue un produit en croix.
- Sinon, on multiplie par le dénominateur commun.
- On résout l'équation en vérifiant que la ou les solutions appartiennent à l'ensemble de définition.

Factorisation

On peut factoriser de deux façons :

- Par un facteur commun : ab + ac = a(b + c)
- Par une identité remarquable :
 - Par une différence de deux carrés :

$$a^2 - b^2 = (a - b)(a + b)$$

— par un carré parfait :

$$a^2 \pm 2ab + b^2 = (a \pm b)^2$$

Inéquation du 1er degré

On isole l'inconnue dans une inéquation du 1^{er} degré. On obtient alors :

$$ax \le b$$
 ou $ax < b$ ou $ax > b$ ou $ax \ge b$

- Si $a \neq 0$, on divise par a
 - a > 0, on ne change pas l'inégalité
 - a < 0, \wedge on inverse l'inégalité

On obtient une section commençante ou finissante.

• Si a = 0, on obtient $S = \emptyset$ ou $S = \mathbb{R}$

Équations et inéquations du premier degré

Inéquation produit

Lorsque l'inéquation est de degré supérieur à 1, on annule le second membre.

- On factorise le premier membre
- On détermine les valeurs frontières.
- On remplit un tableau de signes puis on résout l'inéquation à l'aide du tableau.

Signe du binôme ax + b

Lorsque l'on cherche le signe de ax + b:

- On détermine la valeur frontière : $x = -\frac{b}{a}$
- On obtient alors le tableau de signe suivant :

x	-∞ _	$\frac{b}{a}$		$+\infty$
ax + b	signe de – a	ø	signe de <i>a</i>	
a > 0	_	ф	+	
a < 0	+	ø	_	

Inéquation quotient

Lorsque l'inconnue apparaît au dénominateur :

- On détermine l'ensemble de définition D_f .
- On annule le second membre.
- ♠ Pas de produit en croix!!
- On réduit au même dénominateur le premier membre en factorisant si nécessaire.
- On détermine les valeurs frontières.
- On remplit un tableau de signes en mettant une double barre pour la ou les valeurs interdites puis on résout l'inéquation à l'aide du tableau.

Exemples de résolution d'équations

• Premier degré

$$\frac{x+2}{3} - \frac{3(x-2)}{4} = \frac{-7x+2}{12} + 2$$
(×12)
$$4(x+2) - 9(x-2) = -7x+2+24$$

$$4x+8-9x+18 = -7x+2+24$$

$$2x = 0 \Leftrightarrow x = 0, \quad \text{soit } S = \{0\}$$

• Équation produit

$$(x-1)(2x+3) = (x-1)(x-6)$$

$$(x-1)(2x+3) - (x-1)(x-6) = 0$$

$$(x-1)(2x+3-x+6) = 0$$

$$(x-1)(x+9) = 0$$
soit $S = \{-9; 1\}$

• Égalité de deux carrés

$$(5x+2)^2 = (x+1)^2$$

 $5x+2 = x+1$ ou $5x+2 = -x-1$ soit $S = \left\{-\frac{1}{2}; -\frac{1}{4}\right\}$

• Équation quotient

$$\frac{x-3}{2x-4} = \frac{x-2}{2x-5}$$
 $D_f = \mathbb{R} - \left\{2; \frac{5}{2}\right\}$

 $x \in D_f$ produit en croix

$$(x-3)(2x-5) = (x-2)(2x-4)$$

$$2x^2 - 5x - 6x + 15 = 2x^2 - 4x - 4x + 8$$

$$-5x - 6x + 4x + 4x = -15 + 8$$

$$-3x = -7 \iff x = \frac{7}{3} \in D_f \quad \text{soit} \quad S = \left\{\frac{7}{3}\right\}$$

$$\frac{-4}{x-4} + \frac{1}{x} = \frac{-3}{x-3} \qquad D_f = \mathbb{R}^* - \{3; 4\}$$

$$x \in D_f$$
 on multiplie par $x(x-4)(x-3)$

$$-4x(x-3) + (x-4)(x-3) = -3x(x-4)$$

$$-4x^{2} + 12x + x^{2} - 3x - 4x + 12 = -3x^{2} + 12x$$

$$-4x^{2} + x^{2} + 3x^{2} - 3x - 4x = -12$$

$$-7x = -12 \iff x = \frac{12}{7} \in D_{f} \quad \text{soit} \quad S = \left\{\frac{12}{7}\right\}$$

Exemples de résolution d'inéquations

• Premier degré

$$2(x-1) - 3(x+1) > 4(3x+2)$$

 $2x - 2 - 3x - 3 > 12x + 8$
 $-13x > 13 \Leftrightarrow x < -1$ soit $S =]-\infty$; $-1[$

• Inéquation produit

$$(x-5)(x-2) < (x-5)(2x-3) (x-5)(x-2) - (x-5)(2x-3) < 0 (x-5)(x-2-2x+3) < 0 (x-5)(-x+1) < 0 S =] - \infty; 1 [\cup] 5; +\infty [$$

x	$-\infty$		1		5		+∞
x-5		_		_	0	+	
-x + 1		+	ф	_		_	
(x-5)(-x+1)		_	ф	+	0	_	

• Inéquation quotient

$$\frac{4}{x+1} \leqslant 3 \qquad D_f = \mathbb{R} - \{-1\}$$

$$\frac{4}{x+1} - 3 \leqslant 0 \quad \Leftrightarrow \quad \frac{-3x+1}{x+1} \leqslant 0 \qquad S = \left] -\infty; -1 \right[\cup \left[\frac{1}{3}; +\infty \right]$$

x	$-\infty$		-1		$\frac{1}{3}$		+∞
-3x + 1		+		+	ф	_	
x + 1		_	ф	+		+	
$\frac{-3x+1}{x+1}$		_		+	0	_	

Équation bicarrée

Une équation bicarrée est une équation de la forme :

$$ax^4 + bx^2 + c = 0$$

On pose alors $X = x^2$ avec $X \ge 0$

L'équation devient : $aX^2 + bX + c = 0$

On résout en X.

On ne retient que les solutions positives.

On revient à $x: x = \pm \sqrt{X}$

Forme canonique du trinôme

Méthode: Pour déterminer la forme canonique:

- On met a en facteur.
- On considère les deux premiers termes comme le début d'un carré parfait.
- On ajoute puis on retranche le carré introduit.
- On réduit ensuite l'expression.

L'expression générale, que l'on ne retient pas, vaut :

$$a\left(x+\frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

Signe du trinôme

 $\Delta > 0$. Le signe du trinôme est du signe de :

x	$-\infty$		x_2		x_1		+∞
$ax^2 + bx + c$		а	0	-a	0	а	

 $\Delta = 0$. Le trinôme est nul si $x = x_0$ et du signe de *a* sinon.

 Δ < 0. Le trinôme est toujours du signe de *a*

Racines du trinôme

On pose $\Delta = b^2 - 4ac$ appelé discriminant.

• $\Delta > 0$, le trinôme a deux racines distinctes.

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

 $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

• $\Delta = 0$, le trinôme a une racine double $x_0 = -\frac{b}{2a}$

$$x_0 = -\frac{b}{2a}$$

• Δ < 0, le trinôme n'a pas de racines

Le second degré

On appelle trinôme du second degré la quantité :

$$ax^2 + bx + c$$
 avec $a \neq 0$

Fonction trinôme

Toute fonction trinôme f peut se mettre sous la forme canonique suivante:

$$f(x) = a(x - \alpha)^2 + \beta$$

Selon le signe de *a*, on a les variations suivantes :

х	-8		α		$+\infty$
f(x)	+8	^	β	×	+∞

	х	$-\infty$	α	$+\infty$
	f(x)	$-\infty$	γβ	<u>√</u> _∞

Système somme produit

Soit le système
$$\begin{cases} x + y = S \\ xy = P \end{cases}$$

Le système est symétrique donc : si (x, y) est solution alors (y, x) l'est aussi.

x et y sont solutions de l'équation

$$X^2 - SX + P = 0$$

Factorisation. Somme et produit des racines

• $\Delta > 0$: x_1 et x_2 les deux racines.

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

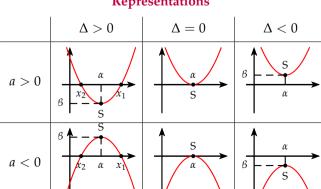
$$S = x_1 + x_2 = -\frac{b}{a}$$
 et $P = x_1 x_2 = \frac{c}{a}$

$$P = x_1 x_2 = \frac{c}{a}$$

• $\Delta = 0$: x_0 la racine double :

$$ax^2 + bx + c = a(x - x_0)^2$$

Représentations



Équation paramétrique

Paramètre : Quantité fixé, souvent noté m, par opposition à une inconnue, noté x, utilisée pour désigner les coefficients devant l'inconnue.

Soit l'équation paramétrique (E_m): $(m-1)x^2 - 2mx + m + 3 = 0$

Déterminer, suivant les valeurs de m, le nombre de solutions de l'équation (E_m).

- m = 1 L'équation (E₁) est du premier degré : -2x + 4 = 0. (E₁) admet une solution simple x = 2
- $m \neq 1$ L'équation (E_m) est du second degré.

$$\Delta = 4m^2 - 4(m-1)(m+3) = 4(-2m+3)$$

Le signe de Δ est du signe de (-2m+3).

• On remplit un tableau de signes en indiquant le nombre de solutions.

m	-∞	1		$\frac{3}{2}$	+∞
Δ	+		+	0	_
Nombre de solutions	2 sol. x_1 et x_2	1 ^{er} deg. 1 sol.	2 sol. x_1 et x_2	x_0 sol. double	pas de solution

Équation se ramenant au second degré

$$\frac{1}{x+2} - \frac{2}{2x-5} = \frac{9}{4} \qquad D_f = \mathbb{R} - \left\{-2, \frac{5}{2}\right\}$$

$$x \in D_f \quad \text{on multiplie par } 4(x+2)(2x-5)$$

$$4(2x-5) - 8(x+2) = 9(x+2)(2x-5)$$

$$8x - 20 - 8x - 16 = 18x^2 - 45x + 36x + 90$$

$$-18x^2 + 9x + 54 = 0 \quad \Leftrightarrow \quad 2x^2 - x - 6 = 0$$

$$\Delta = 1 + 48 = 49 = 7^2 \quad \text{deux sol. distinctes}$$

$$x_1 = \frac{1+7}{4} = 2 \in D_f \quad \text{ou} \quad x_2 = \frac{1-7}{4} = -\frac{3}{2} \in D_f$$

$$S = \left\{-\frac{3}{2}; 2\right\}$$

Inéquation rationnelle se ramenant au second degré

Soit l'inéquation : $\frac{2x^2 + 5x + 3}{x^2 + x - 2} \geqslant 0$

- Racine de $x^2 + x 2 = 0$ $x_1 = 1$ racine évidente P = -2 donc $x_2 = \frac{P}{x_1} = -2$ L'ensemble de définition est $D_f = \{-2; 1\}$
- Racine de $2x^2 + 5x + 3 = 0$ $x_1 = -1$ racine évidente $P = \frac{3}{2}$ donc $x_2 = \frac{P}{x_1} = -\frac{3}{2}$
- On remplit un tableau de signes :

x	$-\infty$	-2		$-\frac{3}{2}$		-1		1		+∞
$2x^2 + 5x + 3$	+		+	0	_	0	+		+	
$x^2 + x - 2$	+	0	_		_		_	0	+	
$\frac{2x^2 + 5x + 3}{x^2 + x - 2}$	+		_	0	+	0	_		+	

•
$$S =]-\infty; -2[\cup \left[-\frac{3}{2}; -1 \right] \cup]1; +\infty[$$

Équation bicarrée et système somme-produit

- Soit l'équation : $x^4 5x 36 = 0$ On pose $X = x^2$ avec $X \ge 0$. L'équation devient : $X^2 - 5X - 36 = 0$ on a : $\Delta = 25 + 144 = 169 = 13^2$ Deux sol. $X_1 = \frac{5+13}{2} = 9$ ou $X_2 = \frac{5-13}{2} = -4 < 0$ On ne retient que $X_1 \ge 0$, deux solutions pour x : $x_1 = 3$ ou $x_2 = -3$
- Soit le système $\begin{cases} x+y=18 \\ xy=65 \end{cases}$ x et y sont solutions de $X^2-18X+65=0$. On a $\Delta=64=8^2$ $X_1=\frac{18+8}{2}=13$ ou $X_2=\frac{18-8}{2}=5$ donc $S=\{(13,5)\,;\,(5,13)\}$

Profe	sseur : Rachid BELEMOU	Résumé	Niveau: 1 BAC-SEx-F
Lycé	Prince Moulay Abdellah	Le second degré	Année : 2023-2024

$f(x) = ax^2 + bx + c$ avec $a \neq 0$

