Professeur : Rachid BELEMOU

Lycée : Prince Moulay Abdellah

Devoir Maison 1

Niveau: 1 BAC-SE-F **Année**: 2023-2024

0.5

1

1

Exercice 1 (7 pts)

- 1) On considère la proposition suivante, $P: (\forall x \in \mathbb{R}): x^2 + x 2 \neq 0$.
 - a) Déterminer la négation de la proposition P.
 - b) En déduire, la valeur de vérité de la proposition *P*.
- 2) a) Montrer l'équivalence suivante :

$$\forall (x,y) \in \mathbb{R}^2_+ : x + y \ge 2\sqrt{xy} \iff \forall (x,y) \in \mathbb{R}^2_+ : (\sqrt{x} - \sqrt{y})^2 \ge 0.$$

- b) En déduire, la valeur de vérité de la proposition : $\forall (x,y) \in \mathbb{R}^2_+ : x+y \ge 2\sqrt{xy}$.
- 3) Montrer que $\sqrt{2} \notin \mathbb{Q}$ (Par l'absurde).
- 4) Soient $x, y \in \mathbb{R}$. Montrer l'implication suivante : $x \neq \frac{5}{2}y \Rightarrow x + 2y \neq 3(x y)$.
- 5) Résoudre dans \mathbb{R} l'équation suivante : $x^2 3|x 1| 1 = 0$.
- 6) a) Soit $a \in \mathbb{R}^* \{1\}$ Montrer par récurrence que :

$$(\forall n \in \mathbb{N}^*): 1 + a + a^2 + \dots + a^n = \frac{a^{n+1} - 1}{a - 1}.$$

Exercice 2 (5,75 pts)

Considérons les deux fonctions f et g définies par : $f(x) = x^2 + 2x$ et $g(x) = \sqrt{x+1}$. Soient (C_f) et (C_g) les courbes respectives de f et g dans un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1) a) Déterminer D_g l'ensemble de définition de la fonction g, et déterminer le tableau de variations de g.
 - b) Construire la courbe (C_g) dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$.
- 2) a) Déterminer D_f l'ensemble de définition de la fonction f. et déterminer le tableau de variations de f.
 - b) Construire la courbe (C_f) dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$.
- 3) Déterminer D_{gof} l'ensemble de définition de la fonction gof, et déterminer gof(x) pour tout $x \in D_{gof}$.

Exercice 3 (7.25 pts)

Considérons les deux fonctions f et g définies par : $f(x) = \frac{1}{4}x^3$ et $g(x) = \frac{x}{x-1}$. Soient (C_f) et (C_g)

les courbes respectives de f et g dans un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1) a) Déterminer D_f l'ensemble de définition de la fonction f. 0.5
 - b) Déterminer D_g l'ensemble de définition de la fonction g.
- 2) Construire les courbes (C_f) et (C_g) dans le même repère $(O; \overrightarrow{i}; \overrightarrow{j})$.
- 3) a) Résoudre graphiquement l'équation suivante : f(x) = g(x).
 - b) Résoudre algébriquement l'équation : f(x) = g(x).
- (Indication : 2 est une solution de l'équation : $\frac{x^3}{4} \frac{x^2}{4} 1$).
- 4) a) Résoudre graphiquement l'inéquation suivante : f(x) ≤ g(x).
 b) Résoudre algébriquement l'inéquation : f(x) ≤ g(x).
 (Indication : x³ x² 4 = (x 2)(x² + x + 2)).