Niveau: 1 BAC-SE-F

Année : 2024-2025

1 Rappels:

1.1 L'ensemble de définition d'une fonction

a) Activité:

Déterminer l'ensemble de définition de chacune des fonctions suivantes :

$$f_1(x) = x^2 + 2x + 1$$
; $f_2(x) = \frac{1}{x} - 2$; $f_3(x) = \frac{1}{x - 2}$; $f_4(x) = \frac{1}{|x| - 2}$.
 $f_5(x) = \frac{1}{|x| + 2}$; $f_6(x) = \sqrt{2x - 3}$; $f_7(x) = \frac{1}{\sqrt{2x - 3}}$.

b) Définition:

Définition 1

Soit $f: x \mapsto f(x)$ une fonction numérique d'une variable réelle x.

 \triangleright si f(x) existe (C-à-d appartienne à \mathbb{R}), on dit que f(x) est l'image de x par la fonction f.

 \triangleright L'ensemble constitué de tous les nombres x qui ont une image par la fonction f, est appelé l'en**semble de définition** de f et se note D_f .

1.2 Variations d'une fonction

a) Activité:

Étudier les variations de la fonction f sur I et J dans chacune des cas suivants :

1)
$$f(x) = 5x + 2$$
 et $I = \mathbb{R}$.

2)
$$f(x) = -3x + 1$$
 et $I = \mathbb{R}$.

3)
$$f(x) = \sqrt{x}$$
 et $I = \mathbb{R}_{+}^{*} =]0; +\infty[$.

4)
$$f(x) = \frac{3}{x}$$
 et $I =]0; +\infty[$ et $J =]-\infty; 0[$.

5)
$$f(x) = \frac{-2}{x}$$
 et $I =]0; +\infty[$ et $J =]-\infty; 0[$.

6)
$$f(x) = |x-2|$$
 et $I = [2; +\infty[$ et $J =]-\infty; 2].$

b) Propriété:

Proprieté 2

Soit f une fonction et I un intervalle inclus dans D_f .

- \triangleright (f est croissante sur I) \Leftrightarrow (\forall (x,y) \in I²: x \leq y \Rightarrow f(x) \leq f(y)).
- \triangleright (f est strictement croissante sur I) \Leftrightarrow $(\forall (x,y) \in I^2 : x < y \Rightarrow f(x) < f(y))$.
- \triangleright (f est décroissante sur I) \Leftrightarrow ($\forall (x,y) \in I^2 : x < y \Rightarrow f(x) > f(y)$).
- \triangleright (f est strictement décroissante sur I) \Leftrightarrow ($\forall (x,y) \in I^2 : x < y \Rightarrow f(x) > f(y)$).

c) Taux de variation d'une fonction

Définition 2

Soit f une fonction et soient a et b deux éléments distincts de D_f .

Le nombre réel $T = \frac{f(b) - f(a)}{b - a}$ est appelé taux de variation de f entre a et b.

1

d) Variations et taux de variation

Proprieté 3

Soient f une fonction et $T = \frac{f(b) - f(a)}{b - a}$ son taux de variation entre deux éléments distincts a et b d'un intervalle I inclus dans D_f on a :

- \triangleright (f est croissante sur I) \Leftrightarrow (\forall (a,b) \in I²: T \geq 0).
- \triangleright (f est strictement croissante sur I) \Leftrightarrow (\forall (a,b) \in I²: T > 0).
- \triangleright (f est décroissante sur I) \Leftrightarrow (\forall (a,b) \in I² : T \leq 0).
- \triangleright (f est strictement décroissante sur I) \Leftrightarrow (\forall (a,b) \in I²: T < 0).

2 Fonction majorée - Fonction minorée - Fonction bornée

a) Activité:

Soit f la fonction définie par : $f(x) = \frac{2x^2 + 1}{x^2 + 1}$.

- 1) Montrer que $(\forall x \in \mathbb{R}) : f(x) < 2$.
- 2) a) Montrer que $(\forall x \in \mathbb{R}) : f(x) \ge 1$.
 - (b Résoudre l'équation f(x) = 1.
- 3) En déduire que : $(\forall x \in \mathbb{R}) : 1 \le f(x) < 2$.

b) Définition

Définition 3

Soit f une fonction numérique définie sur un intervalle I de \mathbb{R} .

- \triangleright On dit que f est **majorée** sur I s'il existe un réel M tel que : $f(x) \le M$ pour tout $x \in I$.
- \triangleright On dit que f est **minorée** sur I s'il existe un réel m tel que : $f(x) \ge m$ pour tout $x \in I$.
- ▷ On dit que f est **bornée** sur I si elle est à la fois majorée et minorée.

c) Exemples:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$. On a $(\forall x \in \mathbb{R}) : 0 \le f(x) \le 1$, donc f est bornée sur \mathbb{R} (Elle est minorée par 0 et majorée par 1).

d) Propriété:

Proprieté 4

Soit f une fonction numérique définie sur un intervalle I de \mathbb{R} . (f est bornée sur I) \Leftrightarrow $[(\exists k \in \mathbb{R}^+) (\forall x \in I) : |f(x)| \le k]$.

3 Extremums d'une fonction

a) Définition:

Définition 4

Soit f une fonction définie sur un intervalle I, et a un élément de l'intervalle I.

- \triangleright On dit que f(a) est la valeur maximale (ou le maximum) de f sur l'intervalle I, si $f(x) \le f(a)$ pour tout $x \in I$.
- *> On dit que* f(a) *est* **la valeur minimale** (ou le minimum) de f sur l'intervalle I, si f(x) ≥ f(a) pour tout x ∈ I.

b) Exemple:

Soit f une fonction numérique définie sur l'intervalle [-2;2] dont le tableau de variations est le suivant :

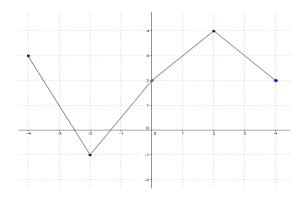
		U					
X	-2		0		-1		2
	1				3		
f		\searrow		7		\searrow	
			-1				0

Déterminons les extremums de f sur l'intervalle [-2;2].

- \triangleright Le maximum (ou valeur maximale) d'une fonction f sur un intervalle I, s'il existe, est la plus grande valeur possible de f(x) quand x décrit l'intervalle I.
- \triangleright Le minimum (ou valeur minimale) d'une fonction f sur un intervalle I, s'il existe, est la plus petite valeur possible de f(x) quand x décrit l'intervalle I.

Sur l'intervalle [-2;2], on a : $-1 \le f(x) \le 3$, or -1 = f(0) et 3 = f(1) donc $f(0) \le f(x) \le f(1)$, pour tout $x \in [-2;2]$. On déduit que : f(0) est le minimum de f sur [-2;2], et f(1) est le maximum de f sur [-2;2].

Exercice:



Soit f la fonction définie sur l'intervalle [-4;4] dont la représentation graphique est le suivante :

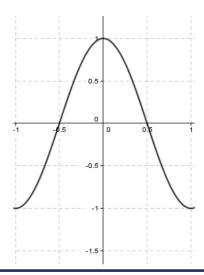
- 1) dresser le tableau de variations de f.
- 2) déterminer les extremums de f.

4 Fonction périodique

a) Activité:

Soit f la fonction définie par : $f(x) = \cos(\pi x)$

- 1) Montrer que $(\forall x \in \mathbb{R}) : f(x+2) = f(x)$.
- 2) Reproduire la figure suivante et compléter la représentation graphique de f sur l'intervalle [-5;5].



b) Définition:

Définition 5

Soit f une fonction numérique et D son ensemble de définition. On dit que f est **périodique** si $(\exists T \in$

$$\mathbb{R}_{+}^{*}): \left\{ \begin{array}{l} (\forall x \in D): \ ona\ x+T \in D \\ (\forall x \in D): \ f(x+T) = f(x) \end{array} \right. \ \textit{Le nombre T est appelé une période de la fonction f.}$$

c) Exemples:

- $\triangleright 2\pi$ est une période de la fonction $x \mapsto \cos(x)$.
- $\triangleright 2\pi$ est une période de la fonction $x \mapsto \sin(x)$.
- $\triangleright \pi$ est une période de la fonction $x \mapsto \tan(x)$.

Exercice:

- 1. Montrer que : π est une période de la fonction $x \mapsto f(x) = \cos(2x)$.
- 2. Montrer que : 4 est une période de la fonction $x \mapsto g(x) = \sin(\frac{\pi}{2}x)$.
- 3. Soit *a* un réel strictement positif. Montrer que les fonctions $x \mapsto h_1(x) = \cos(ax)$ et $x \mapsto h_2(x) = \sin(ax)$ sont périodiques de période $\frac{2\pi}{a}$.

c) Propriété:

Proprieté 5

Si T est une période d'une fonction f, alors pour tout $k \in \mathbb{Z}$; on $a : (\forall x \in D_f) : f(x+kT) = f(x)$.

d) Remarque:

Si f est une fonction d'ensemble de définition D, et de période T, alors :

- ▷ Il suffit d'étudier ses variations sur : $[0;T] \cap D$ ou $[-\frac{T}{2};\frac{T}{2}]$ (ou sur un intervalle de d'amplitude T inclus dans D).
- ▷ La partie de la courbe de f sur $[kT;(k+1))T] \cap D$ $(k \in \mathbb{Z})$ se déduit de la partie de la courbe de f sur $[0;T] \cap D$ par la translation de vecteur $\overrightarrow{u}(kT,0)$.

5 Comparaison de deux fonctions- interprétation géométrique :

5.1 Égalité de deux fonctions :

a) Définition

Définition 6

Soit f et g deux fonctions numériques dont les ensembles de définition sont respectivement D_f et D_g .

On dit que
$$f$$
 et g sont égales, et on note $f=g$, si :
$$\begin{cases} D_f=D_g\\ (\forall x\in D_f):\ f(x)=g(x) \end{cases}$$

b)Exercice

- 1) Soit f et g deux fonction telles que $f(x) = \sqrt{x^2}$ et g(x) = x. Montrer que $f \neq g$.
- 2) Soit f et g deux fonction telles que f(x) = x + 1 et $g(x) = \frac{x^2 1}{x 1}$.

5.2 Comparaison de deux fonctions

5.3 Activité:

Soient f et g deux fonctions définies par : $f(x) = x^2 - 1$ et $g(x) = \frac{x-1}{x+1}$, et soient C_f et C_g les courbes de f et g respectivement, dans un repère orthonormée $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. Représenter graphiquement C_f et C_g .
- a) Résoudre graphiquement l'équation f(x) = g(x).
 - b) Résoudre algébriquement l'équation f(x) = g(x).
- a) Résoudre graphiquement l'inéquation $f(x) \ge g(x)$. 3.
 - b) Résoudre algébriquement l'inéquation $f(x) \ge g(x)$.

5.4 **Définition**

Définition 7

Soit f et g deux fonctions définies sur un intervalle I.

On dit que f est inférieure ou égale à g sur I, et on note $f \le g$; si $f(x) \le g(x)$ pour tout $x \in I$.

c) Interprétation géométrique

Définition

Définition 8

Si $f \leq g$ sur un intervalle I, cela veut dire que la courbe de f se trouve au-dessous ou sur la courbe de g sur l'intervalle I.

Remarque

 $\triangleright f < g \text{ sur } I \text{ si et seulement si } : (\forall x \in I) : f(x) < g(x), \text{ et cela veut dire que } (C_f) \text{ est strictement au-dessous}$ de (C_g) sur I.

Image d'un intervalle par une fonction : 6

a) Définition

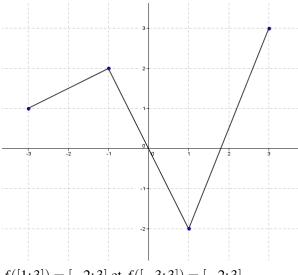
Définition 9

Soit f une fonction définie sur un intervalle I. L'ensemble des éléments f(x) quand x décrit l'intervalle I, est appelé l'image de l'intervalle I par la fonction f, et noté f(I), on a :

 $f(I) = \{f(x)/x \in I\}, \text{ et } y \in f(I) \Leftrightarrow (\exists x \in I) : y = f(x).$

b) Exemple:

Soit f une fonction dont la représentation graphique est le suivante :



$$f([1;3]) = [-2;3]$$
 et $f([-3;3]) = [-2;3]$.

On a:
$$f([-3;-1]) = [1;2]$$
; $f([-1;1]) = [-2;2]$;

c) Remarque:

- \triangleright Si f est croissante sur un intervalle [a;b] alors : f([a;b]) = [f(a);f(b)].
- \triangleright Si f est décroissante sur un intervalle [a;b] alors : f([a;b]) = [f(b);f(a)].
- \triangleright Si f n'est pas monotone sur un intervalle [a;b] alors : f([a;b]) = [m;M]. (où M est le maximum de f sur [a;b] et m le minimum de f sur [a;b]).

7 Composé de deux fonctions :

a) Activité:

Soient f et g deux fonctions définies par : $g(x) = \sqrt{x}$ et f(x) = x + 2.

- 1. *a*) Déterminer : f(-1); f(2) et $f(\frac{1}{4})$.
 - b) Déterminer : g(f(-1)); g(f(2)) et $g(f(\frac{1}{4}))$.
- 2. Déterminer un intervalle I tel que, pour tout $x \in I$: g(f(x)) existe et déterminer g(f(x)), pour tout $x \in I$.

b) Définition:

Définition 10

Soient f et g deux fonctions définies respectivement sur D_f et D_g .

On pose $D = \{x \in D_f/f(x) \in D_g\}$, la fonction h définie sur D par : h(x) = g(f(x)) est appelé **composée** des fonctions f et g dans cet ordre. Elle est notée $g \circ f$ (se lit g rond f).

c) Remarques:

1.
$$x \in D_{gof} \Leftrightarrow x \in D_f \text{ et } f(x) \in D_g$$
.
2. $D_{gof} = \{x \in D_f/f(x) \in D_g\}$ et $D_{fog}\{x \in D_g/g(x) \in D_f\}$.

d) Exemples:

Soient
$$f$$
 et g deux fonctions définies par : $f(x) = x - 3$ et $g(x) = \frac{1}{x}$.
On a : $D_{gof} = \{x \in D_f/f(x) \in D_g\} = \{x \in \mathbb{R}/x - 3 \in \mathbb{R}^*\} = \{x \in \mathbb{R}/x - 3 \neq 0\} = \mathbb{R} - \{3\}$, et $(\forall x \in \mathbb{R} - \{3\}) : gof(x) = g(f(x)) = \frac{1}{f(x)} = \frac{1}{x - 3}$.

Déterminons fog:

On a:
$$f \circ g(x) = f(g(x))$$
 et $D_{f \circ g} = \{x \in D_g/g(x) \in D_f\} = \{x \in \mathbb{R}^* / \frac{1}{x} \in \mathbb{R}\} \mathbb{R}^* = \mathbb{R} - \{0\}$, et $(\forall x \in \mathbb{R}^* : f \circ g(x) = f(g(x)) = g(x) - 3 = \frac{1}{x} - 3$.

8 Monotonie d'une fonction :

8.1 Monotonie de la fonction $f + k : (k \in \mathbb{R})$:

a) Activité:

Soit f une fonction définie sur un intervalle I, on définie la fonction f+k (où $k \in \mathbb{R}$) sur I par $(\forall x \in I)(f+k)(x)=f(x)+k$.

- 1). Montrer que si f est croissante sur I alors f + k est croissante sur I.
- 2). Montrer que si f est décroissante sur I alors f + k est décroissante sur I.

b) propriété:

Proprieté 6

Soit f une fonction définie sur un intervalle I, les deux fonctions f et f+k ont les mêmes variations sur I.

8.2 Monotonie de la fonction $k \cdot f : (k \in \mathbb{R})$:

a) Activité:

Soit f une fonction définie sur un intervalle I, on définie la fonction $k \cdot f$ où $(k \in \mathbb{R})$ sur I par $(\forall x \in I)$: $(kf)(x) = k \cdot f(x)$.

- 1. Montrer que si k > 0 alors les fonctions f et $k \cdot f$ ont les mêmes variations sur I.
- 2. Montrer que si k < 0 alors les fonctions f et $k \cdot f$ ont des sens de variations contraire sur I.

b) Propriété:

Proprieté 7

Soit f une fonction définie sur un intervalle I, et $k \in \mathbb{R}$.

 \triangleright Si k > 0 alors les fonctions f et $k \cdot f$ ont les mêmes variations sur I. \triangleright Si k > 0 alors les fonctions f et $k \cdot f$ ont des sens de variations contraire sur I.

c) Exercice:

Soit f la fonction définie par : $f(x) = \frac{2}{x}$.

- 1. Montrer que la fonction f est décroissant sur \mathbb{R}_+^* .
- 2. Soit *g* la fonction définie par $g(x) = \frac{-10}{x} + 3$.
 - a) Écrire g en fonction de f.
 - b) Étudier la monotonie de la fonction g.

8.3 Monotonie de la composée de deux fonctions :

a) Activité:

Soient f et g deux fonctions définies respectivement sur des intervalles I et J, tels que pour tout $x \in I$: on a $f(x) \in J$:

- 1. Montrer que si f et g ont les mêmes variations sur I et J respectivement alors l fonction gof est croissante sur I.
- 2. Montrer que si f et g ont des sens de variations contraires sur I et J respectivement alors 1 fonction gof est décroissante sur I.

b) Propriété:

Proprieté 8

Soient f et g deux fonctions définies respectivement sur des intervalles I et J, tels que pour tout $x \in I$: on a $f(x) \in J$:

- ▷ Si f et g ont les mêmes variations sur I et J respectivement alors l fonction gof est croissante sur I
- ▷ Si f et g ont des sens de variations contraires sur I et J respectivement alors l fonction gof est décroissante sur I.

c) Exemple:

Soient f et g deux fonctions définies par : $f(x) = x^2$ et $g(x) = \frac{1}{x}$.

1). Déterminons la monotonie de la fonction gof sur \mathbb{R}_+^* .

On a la fonction f est croissante sur \mathbb{R}_+^* et $(\forall x \in \mathbb{R}_+^*)$: $f(x) \in \mathbb{R}_+^*$, et la fonction g est décroissante sur \mathbb{R}^*+ , alors la fonction $g \circ f$ est décroissante sur \mathbb{R}_+^* .

2). Déterminons la monotonie de la fonction gof sur \mathbb{R}_{-}^{*} .

On a la fonction f est décroissante sur \mathbb{R}_{-}^* et $(\forall x \in \mathbb{R}_{-}^*)$: $f(x) \in \mathbb{R}_{+}^*$, et la fonction g est décroissante sur \mathbb{R}^*+ , alors la fonction $g \circ f$ est croissante sur \mathbb{R}_{-}^* .

9 Représentation graphique des fonctions $x \mapsto \sqrt{x+a}$ et $x \mapsto ax^3$:

La fonction $x \mapsto \sqrt{x+a}$ où $a \in \mathbb{R}$:

a) Activité:

Considérons les deux fonctions f et g tels que $f(x) = \sqrt{x}$ et $g(x) = \sqrt{x+1}$. Soit (C_f) et (C_g) les courbes de f et g respectivement dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

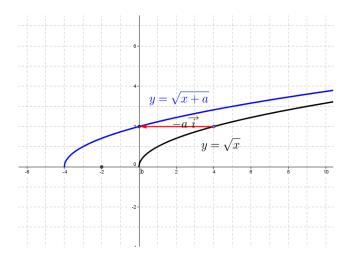
- 1. Déterminer l'ensemble de définition de f et g.
- 2. Étudier la monotonie des fonctions f et g.
- - b) Représenter graphiquement (C_f) et (C_g) dans le même repère.
- 4. Soit $x \in [-2; +\infty[$, on considère les points M(x+2; g(x+2)) et M'(x; f(x)),
 - a) Montrer que : $\overrightarrow{MM'} = -2\overrightarrow{i}$.
 - b) En déduire que la courbe (C_f) est l'image de la courbe (C_g) par la translation de vecteur $-2\overrightarrow{i}$.

b) Définition :

Définition 11

 \triangleright Soit $a \in \mathbb{R}$, la fonction $x \mapsto \sqrt{x+a}$ est définie et croissante sur $[-a; +\infty[$.

 \triangleright la courbe de la fonction $x \mapsto \sqrt{x+a}$ est l'image de la courbe de la fonction $x \mapsto \sqrt{x}$ par la translation de vecteur -a \overrightarrow{i} .



c) Remarque:

Tableau de variation de la fonction $x \mapsto \sqrt{x+a}$: $\begin{vmatrix} x & -a & +c \\ f & \nearrow & 0 \end{vmatrix}$

Exercice:

Représenter graphiquement la fonction : $x \mapsto f(x) = \sqrt{x+3}$.

9.1 La fonction $x \mapsto ax^3$ où $a \in \mathbb{R}^*$:

a)Activité:

- I) Soit g la fonction définie sur \mathbb{R} par : $g(x) = \frac{1}{2}x^3$. Soit (C_g) la courbe de g dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.
 - 1. Étudier les variations de la fonction g sur l'intervalle $[0; +\infty[$.
 - 2. Montrer que la fonction g est impaire, puis dresser son tableau de variations.
 - 3. Recopier et compléter le tableau suivant :

	х	0	1	$\frac{3}{2}$	2
•					

- 4. Tracer la courbe de la fonction *g*.
- II) Représenter graphiquement la fonction : $x \mapsto -x^3$,

b) Propriété :

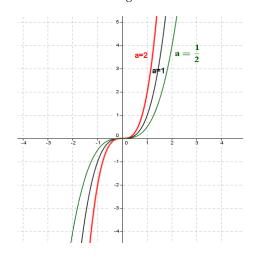
Soit *g* la fonction définie par $g(x) = ax^3$, où $a \in \mathbb{R}^*$ on a :

- \triangleright Ensemble de définition : $D_g = \mathbb{R}$,
- * Si a > 0 alors g est strictement croissante sur \mathbb{R}

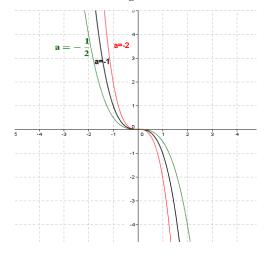
	х	-∞		+∞
:	g		7	

- * Si a < 0 alors g est strictement décroissante sur $\mathbb R$:
- \triangleright La fonction g est impaire.

 \triangleright courbe de g si a > 0.



 \triangleright courbe de g si a < 0.



Exercice:

- 1. Représenter graphiquement les deux fonctions : $x \mapsto f(x) = \sqrt{x-2}$ et $x \mapsto g(x) = \frac{1}{4}x^3$.
- 2. Résoudre graphiquement l'équation f(x) = g(x).
- 3. Résoudre graphiquement l'inéquation $f(x) \le g(x)$.

Lycée : Prince Moulay Abdellah

Devoir Maison 1

Niveau: 1 BAC-SE-F

Année : 2023-2024

Exercice 1 (7 pts) 1) On considère la proposition suivante, $P: (\forall x \in \mathbb{R}): x^2 + x - 2 \neq 0$. a) Déterminer la négation de la proposition P. 0.5 b) En déduire, la valeur de vérité de la proposition P. 0.5 2) *a*) Montrer l'équivalence suivante : $\forall (x,y) \in \mathbb{R}^2_+ : x+y \geq 2\sqrt{xy} \iff \forall (x,y) \in \mathbb{R}^2_+ : (\sqrt{x} - \sqrt{y})^2 \geq 0 \; .$ 0.75 b) En déduire, la valeur de vérité de la proposition : $\forall (x,y) \in \mathbb{R}^2_+ : x+y \ge 2\sqrt{xy}$. 0.5 3) Montrer que $\sqrt{2} \notin \mathbb{Q}$ (Par l'absurde). 1.5 4) Soient $x, y \in \mathbb{R}$. Montrer l'implication suivante : $x \neq \frac{5}{2}y \Rightarrow x + 2y \neq 3(x - y)$. 0.75 5) Résoudre dans \mathbb{R} l'équation suivante : $x^2 - 3|x - 1| - 1 = 0$. 1 a) Soit $a \in \mathbb{R}^* - \{1\}$ Montrer par récurrence que : $(\forall n \in \mathbb{N}^*): 1 + a + a^2 + \dots + a^n = \frac{a^{n+1} - 1}{a - 1}.$ 1.5

Exercice 2 (5,75 pts)				
Considérons les deux fonctions f et g définies par : $f(x) = x^2 + 2x$ et $g(x) = \sqrt{x+1}$. Soient (C_f) et				
(C_g) les courbes respectives de f et g dans un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.				
1) a) Déterminer D_g l'ensemble de définition de la fonction g , et déterminer le tableau de variations				
de g.				
b) Construire la courbe (C_g) dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$.	0.75			
2) a) Déterminer D_f l'ensemble de définition de la fonction f . et déterminer le tableau de variations	1.25			
$\det f$.				
b) Construire la courbe (C_f) dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$.	1			
3) Déterminer D_{gof} l'ensemble de définition de la fonction gof , et déterminer $gof(x)$ pour tout				
$x \in D_{gof}$.				

Exercice 3 (7.25 pts)				
Considérons les deux fonctions f et g définies par : $f(x) = \frac{1}{4}x^3$ et $g(x) = \frac{x}{x-1}$. Soient (C_f) et (C_g)				
les courbes respectives de f et g dans un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.				
1) a) Déterminer D_f l'ensemble de définition de la fonction f .	0.5			
b) Déterminer D_g l'ensemble de définition de la fonction g .	0.5			
2) Construire les courbes (C_f) et (C_g) dans le même repère $(O; \overrightarrow{i}; \overrightarrow{j})$.				
3) a) Résoudre graphiquement l'équation suivante : $f(x) = g(x)$.				
b) Résoudre algébriquement l'équation : $f(x) = g(x)$.				
(Indication : 2 est une solution de l'équation : $\frac{x^3}{4} - \frac{x^2}{4} - 1$).	1			
4) a) Résoudre graphiquement l'inéquation suivante : $f(x) \le g(x)$.	1			
b) Résoudre algébriquement l'inéquation : $f(x) \le g(x)$.	1.5			
(Indication: $x^3 - x^2 - 4 = (x - 2)(x^2 + x + 2)$).				