Lycée

Prince Moulay Abdellah PRODUIT SCALAIRE DANS LE PLAN

Année : 2023-2024

Expression analytique du produit scalaire dans le plan : 1

1.1 Rappel (Formule trigonométrique du produit scalaire) :

a) Activité:

Soit ABC un triangle dans le plan rectangle en A, avec : AB = 2 ; AC = 2 et $BC = \sqrt{8}$. et $(\overrightarrow{BC}; \overrightarrow{BA}) \equiv \frac{\pi}{4} [2\pi]$. Calculer les produit scalaire suivants : $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{BC} \cdot \overrightarrow{BA}$ et $\overrightarrow{CA} \cdot \overrightarrow{CB}$.

b) Propriété et définition :

Proprieté et Définition

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs dans le plan.

Le produit scalaire des vecteurs \overrightarrow{u} et \overrightarrow{v} est le nombre réel $\overrightarrow{u} \cdot \overrightarrow{v}$ définie par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\| \cdot \cos(\overrightarrow{u}; \overrightarrow{v}).$$

Remarque:

$$\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0.$$

1.2 Repère orthonormé direct :

Définition 1

Soit $(\overline{i}'; \overline{j}')$ une base du plan, et O un point du plan.

- \triangleright On dit que $(\overrightarrow{i}; \overrightarrow{j})$ est une base orthonormée si : $\overrightarrow{i} \cdot \overrightarrow{j} = 0$; $||\overrightarrow{i}|| = ||\overrightarrow{j}|| = 1$.
- $\quad \triangleright \ \textit{On dit que} \ (O; \overrightarrow{i}; \overrightarrow{j}) \ \textit{est un repère orthonorm\'e si} \ (\overrightarrow{i}; \overrightarrow{j}) \ \textit{est une base orthonorm\'ee}.$
- $ightharpoonup Si\ (\overrightarrow{i};\overrightarrow{j})$ est une base orthonormée et $(\overrightarrow{i};\overrightarrow{j}) \equiv \frac{\pi}{2}[2\pi]$ alors $(O;\overrightarrow{i};\overrightarrow{j})$ est appelé repère

Dans toute la suite du chapitre, On considère que le plan est rapporté à un repère orthonormé direct $(O; \overrightarrow{i}; \overrightarrow{i})$.

1

1.3 Expression analytique du produit scalaire :

a) Activité:

Soit
$$\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j}$$
 et $\overrightarrow{v} = x'\overrightarrow{i} + y'\overrightarrow{j}$,

- 1. Montrer que : $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$.
- 2. En déduire que : $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$

Proprieté

Soit $\overrightarrow{u}(x,y)$ et $\overrightarrow{v}(x',y')$ deux vecteurs du plan, on $a: \overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$.

Exemple

Soit
$$\overrightarrow{u}(2;-3)$$
; $\overrightarrow{v}(-1;4)$ et $\overrightarrow{w}(3;2)$.
Calculer $\overrightarrow{u} \cdot \overrightarrow{v}$; $\overrightarrow{v} \cdot \overrightarrow{w}$ et $\overrightarrow{u} \cdot \overrightarrow{w}$.

1.4 Norme d'un vecteur - distance entre deux points :

a) Norme d'un vecteur:

Soit $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ un vecteur du plan. La norme du vecteur \overrightarrow{u} est : $||\overrightarrow{u}|| = \sqrt{x^2 + y^2}$.

b) Distance entre deux points :

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan. La distance AB est $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Exercice:

Considérons les points A(3;1); B(-1;-1) et C(5;-3).

1. Calculer les distances AB; AC et BC. En déduire la nature du triangle ABC. (isocèle et rectangle en). 2. Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$.

1.5 Expression de $cos(\theta)$ et $sin(\theta)$

Proprieté

Soit $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j}$ deux vecteurs non nuls du plan et une mesure de l'angle $(\overrightarrow{u}; \overrightarrow{v})$. On a:

$$\cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \cdot \sqrt{x'^2 + y'^2}} \quad et \quad \sin(\theta) = \frac{\det(\overrightarrow{u}; \overrightarrow{v})}{\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \cdot \sqrt{x'^2 + y'^2}}.$$

Démonstration:

Exercice:

Considérons les points A(1;1); B(-1;2) et C(4;5).

1) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $det(\overrightarrow{AB}; \overrightarrow{AC})$.

2) et soit θ une mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$. Calculer : $\cos(\theta)$ et $\cos(\theta)$.

Remarque:

Soit *ABC* un triangle. L'aire du triangle *ABC*, est $S = \frac{1}{2} |det(\overrightarrow{AB}; \overrightarrow{AC})|$.

2 Droite dans le plan (Étude analytique)

2.1 Vecteur normal à une droite :

Définition

Soit (D) une droite du plan.

Tout vecteur non nul et orthogonal à un vecteur directeur de la droite (D) est appelé vecteur normal à la droite (D).

Soit (D) une droite d'équation cartésienne : ax + by + c = 0. le vecteur $\overrightarrow{n}(a;b)$ est normal à (D).

Exemple:

Considérons la droite (D) telle que : (D) : 2x + 3y - 4 = 0, on a : $\overrightarrow{u}(-3;2)$ est un vecteur directeur de la droite (D). et $\overrightarrow{n}(2;3)$ est un vecteur normal à (D).

2

Exercice:

Donner un vecteur normal à la droite (D) dans chacune des cas suivants :

1). (D):
$$x - 2y + 5 = 0$$
 (D): $2y - 3 = 0$ (D): $x - 1 = 0$.

2.2 Équation d'une droite définie par un point et un vecteur normal

Proprieté

Une équation de la droite (D) passant par le point $A(x_A; y_A)$ et de vecteur normal $\overrightarrow{n}(a; b)$ est : $a(x-x_A)+b(y-y_A)=0$.

En effet soit M(x;y) un point du plan, on a :

$$\begin{aligned} M(x;y) &\in (D) &\Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \\ &\Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \\ &\Leftrightarrow (x - x_A) \times a + (y - y_A) \times b = 0 \\ &\Leftrightarrow a(x - x_A) + b(y - y_A) = 0 \end{aligned}$$

c.à.d (D):
$$a(x-x_A) + b(y-y_A) = 0$$

Exemple:

Déterminons une équation cartésienne de la droite (D) passant par le point A(1;3) et de vecteur normal $\overrightarrow{n}(2;1)$.

On a:
$$(D)$$
: $2(x-1) + 1(y-3) = 0$ c.à.d (D) : $2x + y - 5 = 0$

Exercice:

Déterminer une une équation cartésienne de la droite (D) passant par le point A(2;2) et de vecteur normal $\overrightarrow{n}(3;2)$.

Propriété (Orthogonalité de deux droites) :

Soient (D) et (D') deux droites d'équations respectives : (D) : ax + by + c = 0 et (D') : a'x + b'y + c' = 0. (D) et (D') sont orthogonales si et seulement si : leurs vecteurs normaux sont orthogonaux, c'est-à-dire : aa' + bb' = 0.

2.3 Distance d'un point à une droite :

Définition

Soit (D) une droite, A un point du plan et H le projeté orthogonal de A sur (D). Le nombre réel positif AH est appelé la distance du point A à la droite (D) et on écrit : d(A;(D)) = AH.

Proprieté

Soit (D) une droite d'équation : ax + by + c = 0 et $A(x_A; y_A)$ un point du plan. La distance du point A à la droite (D) est :

$$d(A;(D)) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}.$$

Exemple:

On considère la droite (D): 4x - 3y - 1 = 0 et les points A(1;2) et B(-1;1). On a : $d(A;(D)) = \frac{|4*1 + (-3)*2 - 1|}{\sqrt{4^2 + (-3)^2}} = \dots$ et $d(B;(D)) = \frac{|4*(-1) + (-3)*1 - 1|}{\sqrt{4^2 + (-3)^2}} = \dots$

Remarque:

$$d(A;(D)) \Leftrightarrow A \in (D).$$

3 Équation cartésienne d'un cercle

3.1 Équation d'un cercle définie par son centre et son rayon

a) Activité:

I) Considérons le cercle du centre $\Omega(-1;3)$ et de rayon r=5, et soit $M(x;y) \in (\mathcal{P})$.

- 1. Montrer que : $M(x; y) \in (\mathcal{C}) \Leftrightarrow \Omega M^2 = 25$ (1)
- 2. Écrire en fonction de x et y l'égalité (1).
- 3. Parmi les points suivants, déterminer ceux qui appartienne au cercle (C): N(2;1) et L(2;-1). ? ? ?

II) En suivant les mêmes démarches de la question précédente, déterminer une équation cartésienne du cercle de centre $\Omega(a;b)$ et de rayon r (r>0).

b) Propriété:

Proprieté

Une équation cartésienne du cercle (C) de centre $\Omega(a;b)$ et de rayon r (r>0) est : $(x-a)^2 + (y-b)^2 = r^2$, que l'on peut écrire : $x^2 + y^2 - 2ax - 2by + c = 0$ où $c = a^2 + b^2 - r^2$.

Exemple:

Une équation du cercle de centre $\Omega(1;2)$ et de rayon $r=\sqrt{2}$, est : $(x-1)^2+(y-2)^2=\sqrt{2}^2$.

Exercice:

Déterminer une équation du cercle (C) dans chacune des cas suivants :

- a) (C) de centre $\Omega(1;0)$ et de rayon r=3.
- b) (C) de centre $\Omega(2;1)$ et passe par le point A(-1;1).

3.2 Équation d'un cercle définie par son diamètre :

a) Propriété:

Proprieté

Soient A et B deux points distincts du plan. L'ensemble des points M du plan qui vérifient : $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ est un cercle de diamètre [AB].

Exercice:

Déterminer l'équation cartésienne du cercle (C) de diamètre [AB] avec : A(1;3) et B(1;-1).

5.3.3 Représentation paramétrique d'un cercle :

Proprieté et Définition

Le cercle (C) de centre $\Omega(a;b)$ et de rayon r (r>0) est l'ensemble des points M(x;y) du plan vérifient

la système :
$$(S)$$

$$\begin{cases} x = a + r\cos(\theta) \\ y = b + r\sin(\theta) \end{cases} / \theta \in \mathbb{R}.$$

Le système (S) est appelé une représentation paramétrique du cercle (C).

Exercice:

Déterminer une représentation paramétrique du cercle (\mathcal{C}) de centre $\Omega(1;2)$ et de rayon r=3.

5.3.4 Études de l'ensemble des points M(x;y) du plan tels que : $x^2 + y^2 + ax + by + c = 0$

Proprieté

Soient a; b et c trois nombres réels et (E) l'ensemble des points M(x;y) du plan qui vérifient : $x^2 + y^2 + ax + by + c = 0$. $(E) = \{M(x;y) / x^2 + y^2 + ax + by + c = 0\}$.

- $> Si \ a^2 + b^2 4c > 0 \ alors \ (E) \ est \ un \ cercle \ de \ centre \ \Omega\left(-\frac{a}{2}; -\frac{b}{2}\right) \ et \ de \ rayon$ $r = \frac{\sqrt{a^2 + b^2 4c}}{2}.$
- $\triangleright Si a^2 + b^2 4c < 0 \ alors (E) \ est \ l'ensemble \ vide.$
- $\Rightarrow Si \ a^2 + b^2 4c = 0 \ alors \ (E) = \{\Omega\left(-\frac{a}{2}; -\frac{b}{2}\right)\}.$

Résumé: Analytique du produit scalaire dans le plan

Dans tous ce qui suit on considère le plan rapporté au repère orthonormé $(O; \vec{i}; \vec{j})$

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs du plan, alors :

 $\boxed{1} \vec{u.v} = xx' + yy'$ (Cette formule est appelée la formule analytique du produit scalaire) ;

$$2 ||\vec{u}|| = \sqrt{x^2 + y^2}$$

lacktriangledown Si $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan, alors :

$$3 AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

+ Si $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs non nuls du plan, alors :

$$\boxed{4} cos(\vec{u}; \vec{v}) = \frac{\vec{u}.\vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} \quad \text{et} \quad \boxed{5} sin(\vec{u}; \vec{v}) = \frac{det(\vec{u}; \vec{v})}{\|\vec{u}\| \times \|\vec{v}\|}$$

4 L'aire du triangle ABC est : $\boxed{6} S = \frac{1}{2} |det(\overrightarrow{AB}; \overrightarrow{AC})|$

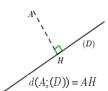
- $\bullet \ \overrightarrow{AB}(\underbrace{x_B x_A}_{x_{\overrightarrow{AB}}}, \underbrace{y_B y_A}_{y_{\overrightarrow{AB}}})$
- $\bullet \ \overrightarrow{AB}.\overrightarrow{AC} = x_{\overrightarrow{AB}} \times x_{\overrightarrow{AC}} + y_{\overrightarrow{AB}} \times y_{\overrightarrow{AC}}$
- $\bullet AB = \sqrt{(x_{\overline{AB}})^2 + (y_{\overline{AB}})^2}$
- $\bullet \ det(\overrightarrow{AB}; \overrightarrow{AC}) = \begin{vmatrix} x_{\overrightarrow{AB}} & x_{\overrightarrow{AC}} \\ y_{\overrightarrow{AB}} & y_{\overrightarrow{AC}} \end{vmatrix}$
- $cos(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC}$
- $sin(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{det(\overrightarrow{AB}; \overrightarrow{AC})}{AB \times AC}$
- $S = \frac{1}{2} \left| det(\overrightarrow{BC}; \overrightarrow{BA}) \right|$
- $S = \frac{1}{2} \left| det(\overrightarrow{CA}; \overrightarrow{CB}) \right|$

- \clubsuit Soit (D) une droite du plan :
- \rightarrow Tout vecteur non nul et orthogonal à un vecteur directeur de la droite (D) est appelé vecteur normal à la droite (D).
- \rightarrow 7 Si une équation cartésienne de la droite (D) est ax + by + c = 0 alors le vecteur $\vec{n}(a;b)$ est normal à la droite (D).
- \rightarrow L'équation cartésienne de la droite passant par $A(x_A; y_A)$ et de vecteur normal $\vec{n}(a; b)$ est $8|a(x-x_A)+b(y-y_A)=0|$
- Si les droites (D) et (D') sont définies respectivement par les équations cartésiennes ax + by + c = 0 et a'x + b'y + c' = 0 alors $9(D) \perp (D') \Leftrightarrow aa' + bb' = 0$

5

 \blacksquare Soit (D) la droite du plan d'équation ax + by + c = 0 et $A(x_A; y_A)$ un point du plan :

La distance du point A à la droite (D) est $\boxed{10}$ $d(A;(D)) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$



- \blacksquare Soit M un point du plan et R un réel positif.
- \rightarrow Le cercle (C) de centre Ω et de rayon R est l'ensemble des points M du plan tels que : $\Omega M = R$ On le note par $C(\Omega;R)$.
- \rightarrow L'équation cartésienne du cercle (C) de centre $\Omega(a;b)$ et de rayon R est $\boxed{11}(x-a)^2 + (y-b)^2 = R^2$
- \rightarrow Que l'on peut écrire $\boxed{12} x^2 + y^2 2ax 2by + c = 0$ où $c = a^2 + b^2 R^2$
- **♣** Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts dans le plan :
- \rightarrow Le cercle de diamètre [AB] est l'ensemble des points M du plan tels que $\overrightarrow{MA}.\overrightarrow{MB} = 0$
- \rightarrow L'équation cartésienne du cercle de diamètre [AB] est 13 $(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$
- **4** Id Soit (Γ) l'ensemble des points M(x;y) du plan vérifiant : $x^2 + y^2 + ax + by + c = 0$ où $(a;b;c) \in \mathbb{R}^3$
- \rightarrow Si $a^2 + b^2 4c > 0$ alors l'ensemble (Γ) est le cercle de centre $\Omega(-\frac{a}{2}; -\frac{b}{2})$ et de rayon $R = \frac{\sqrt{a^2 + b^2 4c}}{2}$
- \rightarrow Si $a^2+b^2-4c=0$ alors l'ensemble (Γ) est le singleton $\Omega(-\frac{a}{2};-\frac{b}{2})$
- → Si $a^2 + b^2 4c < 0$ alors l'ensemble (Γ) est l'ensemble vide.
- \blacksquare Soit (C) le cercle de centre Ω et de rayon R(R>0) et M un point du plan :
- \rightarrow Le point M est sur le cercle $(C) \Leftrightarrow \Omega M = R$
- \rightarrow Le point M est à l'intérieur du cercle $(C) \Leftrightarrow \Omega M < R$
- \rightarrow Le point M est à l'extérieur du cercle $(C) \Leftrightarrow \Omega M > R$
- + 16 Si (C): $x^2 + y^2 + ax + by + c = 0$ est une équation cartésienne du cercle (C) alors :
- \rightarrow Le point $M(x_M; y_M)$ est sur le cercle $(C) \Leftrightarrow x_M^2 + y_M^2 + ax_M + by_M + c = 0$
- \rightarrow Le point $M(x_M; y_M)$ est à l'intérieur du cercle $(C) \Leftrightarrow x_M^2 + y_M^2 + ax_M + by_M + c < 0$
- \rightarrow Le point $M(x_{\!\scriptscriptstyle M};y_{\!\scriptscriptstyle M})$ est à l'extérieur du cercle ${}_{(C)} \Leftrightarrow x_{\!\scriptscriptstyle M}^{-2} + y_{\!\scriptscriptstyle M}^{-2} + ax_{\!\scriptscriptstyle M} + by_{\!\scriptscriptstyle M} + c > 0$

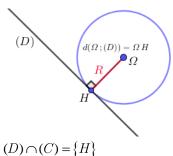
Ainsi, le cercle (C) détermine trois parties disjointes dans le plan.

- Le cercle (C) de centre $\Omega(a;b)$ et de rayon R est l'ensemble des points M(x;y) du plan qui vérifient le système $\boxed{17} \begin{cases} x = a + R\cos(\theta) \\ y = b + R\sin(\theta) \end{cases} / \theta \in \mathbb{R}$, ce système est appelé une représentation paramétrique du cercle (C)
- \blacksquare Soit (C) le cercle de centre Ω et de rayon R et (D) une droite dans le plan et soit $d = d(\Omega;(D))$ la distance du point Ω à la droite (D)

(C) $d(\Omega;(D)) = \Omega H$ $R \qquad \Omega$ H

Si d > R alors (D) ne coupe pas

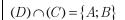
Si d = R alors (D) coupe (C) en un unique point.



 $\begin{pmatrix} a(\Omega;(D)) = \Omega H \\ R \end{pmatrix}$

points.

(D)



Si d < R alors (D) coupe (C) en deux

 $d(\Omega; (D)) = \Omega H$

- \clubsuit Soit (C) un cercle de centre Ω et A un point de (C).
- \rightarrow La tangente à (C) au point A est l'ensemble des points M du plan tels que $\overrightarrow{A\Omega}\overrightarrow{AM}=0$.
- \rightarrow L'équivalence $\boxed{19 \ M(x;y) \in (T) \Leftrightarrow \overrightarrow{A\Omega}.\overrightarrow{AM} = 0}$ permet de déterminer une équation cartésienne de la tangente (T) au cercle (C) au point A.

 $(D) \cap (C) = \emptyset$