Professeur: Rachid BELEMOU

Lycée : Prince Mbulay Abdellah

Cours Trigonométrie

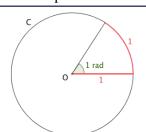
Niveau: TCT-TCS: BIOF

Année : 2021-2022

I) Le radian et le cercle trigonométrique :

1) Le radian

Définition : Soit un cercle *C* de centre O et de rayon 1. On appelle <u>radian</u>, noté *rad*, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.



Remarque1: On peut étendre cette définition à tout cercle de rayon R, en appelant radian la mesure d'un angle interceptant un arc dont la longueur est R.

Remarque2:

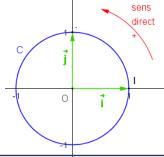
Le radian est aussi une unité de

mesure permettant de mesurer la longueur des arcs sur le

cercle trigonométrique

2) Cercle trigonométrique

Définition1: Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre.



Définition2: on appelle

cercle trigonométrique tout cercle de centre O et de rayon 1 muni d'un point d'origine I

et d'un sens de parcours appelé direct (sens contraire au sens des aiguilles d'une montre)

3) La relation entre le degré et le radian

Proposition:

- Les mesures en radian et en degré d'un même angle sont proportionnelles
- Si x est la mesure d'un angle en radian et y sa mesure en

degré alors :
$$\frac{x}{\pi} = \frac{y}{180}$$

Exemples:

1)Un angle plein (tour complet) mesure 2π radians.

3) Correspondance degrés et radians

Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360° .

Par proportionnalité, on obtient les correspondances suivantes :

Mesure en radians x rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
Mesure en degrés y [⊙]	0	30°	45°	60°	90°	180°	360°

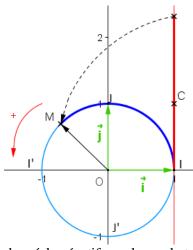
APPLICATION:

- 1) Donner la mesure en radians de l'angle de mesure 33°.
- 2) Donner la mesure en degrés de

l'angle de mesure $\frac{3\pi}{8}$ rad.

π	?	$\frac{3\pi}{8}$
180°	33°	?

- II) Les abscisse curviligne d'un point sur le cercle trigonométrique et l'angle orienté de deux demidroites (ou de deux vecteurs):
- 1)Les abscisse curviligne d'un point sur le cercle trigonométrique



Activité: Enroulement d'une droite autour du cercle trigonométrique si le zéro de droite numérique coïncide avec l'origine I cercle trigonométrique; et on enroule la demi- droite des réels positifs sur le cercle trigonométrique Dans le sens direct et on enroule la demi- droite

des réels négatifs sur le cercle trigonométrique. Dans le sens inverse chaque point M du cercle est ainsi recouvert par une infinité de nombres réels qui s'appellent : abscisses curvilignes de M

b) Définition : soit M un point du cercle trigonométrique d'origine I

Et soit α la longueur de l'arc IM l(on allant de I vers M dans le sens direct) en radian

Tout réel qui s'écrit sous la forme : $\alpha + 2k\pi$ avec $k \in$ s'appelle abscisse curviligne de M

Proposition: si x et x' deux abscisses curvilignes du même point M dans le cercle trigonométrique alors il existe un $k \in$ tel que: $x - x' = 2k\pi$ on écrit: $x \equiv x' \lceil 2\pi \rceil$: Et on lit: x est congrue a x' modulo 2π

2) abscisse curviligne principale

<u>Définition:</u> parmi les abscisses curvilignes d'un point M du cercle trigonométrique une seule se situe dans l'intervalle $\left]-\pi;\pi\right]$ et on l'appelle abscisse curviligne principale du point M

Exemples:

1) les abscisses curvilignes de I sont de la forme : $0+2k\pi$ avec $k\in$

Donc 0 est l'abscisses curviligne principale de I car $0 \in]-\pi;\pi]$

2) pour
$$J$$
 on a $\frac{\pi}{2} \in]-\pi; \pi]$ Donc $\frac{\pi}{2}$ est l'abscisses

curviligne principale de ${\it J}$

$$\text{me } I' \ \text{on a} \ \pi \in \left] -\pi \ ; \pi \right] \ \text{Donc } \pi \ \text{est l'abscisses}$$
 curviligne principale de I'

4) de même
$$J'$$
 on a $-\frac{\pi}{2} \in]-\pi; \pi]$ Donc $-\frac{\pi}{2}$ est

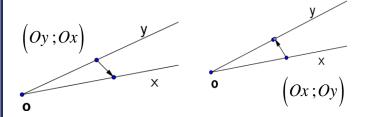
l'abscisses curviligne principale de J^\prime

3)L'angle orienté de deux demi-droites

■ **Définition**: Soit [Ox) et [Oy) deux demi-droites ayant même origine O

Le couple ([Ox);[Oy)) constitué des demi-droites

[Ox] et [Oy] (dans cet ordre) détermine un angle orienté qu'on le note : ([Ox);[Oy])



Remarque : Le couple

$$([Oy);[Ox))$$
 constitué des

demi-droites [Oy] et [Ox]

(dans cet ordre) détermine un

angle orienté qu'on le note : ([Oy);[Ox))

APPLICATION:

1)Déterminer l'abscisses curviligne principale de ch des abscisses suivantes

$$7\pi$$
, $\frac{110\pi}{3}$, $\frac{19\pi}{4}$, $-\frac{131\pi}{3}$, $-\frac{217\pi}{6}$

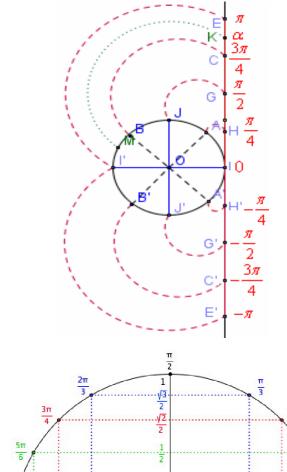
2)Placer sur le cercle trigonométrique les points

$$A(0); B\left(\frac{\pi}{2}\right); C\left(\frac{\pi}{4}\right); D\left(\frac{\pi}{3}\right) ; E\left(\frac{\pi}{6}\right) ; M\left(\frac{7\pi}{2}\right)$$

$$F\left(\frac{5\pi}{6}\right); G\left(-\frac{\pi}{2}\right); H\left(-\frac{\pi}{4}\right); N\left(\frac{3\pi}{2}\right); I\left(\frac{2007\pi}{4}\right)$$

Exercice1: Déterminer l'abscisses curviligne principale de chacune des points suivants

$$M_0\left(\frac{9\pi}{2}\right)$$
; $M_1\left(\frac{11\pi}{3}\right)$; $M_2\left(\frac{67\pi}{4}\right)$; $M_3\left(\frac{19\pi}{3}\right)$

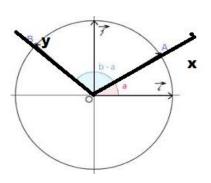




Mesures de l'angle orienté de deux demi-droites

Soit [Ox) et [Oy)deux demi-droites d'origine O et soit (C) le cercle trigonométrique de centre O Soit A et B les points d'intersections

de(C) avec les demi-



droites [Ox] et [Oy] respectivement si a et b sont deux abscisses curvilignes respectives de A et B.

Définitions:

✓ On appelle mesure de l'angle orienté (Ox; Oy) tout réel qui s'écrit sous la forme :

 $b-a+2k\pi$ avec $k \in \text{et on le note}$:

$$\overline{(Ox;Oy)} = b - a + 2k\pi$$

✓ Parmi Toute les mesures de (Ox; Oy)

Une seule se situe dans l'intervalle $]-\pi;\pi]$ et elle

s'appelle abscisse curviligne principale de l'angle (Ox; Oy)

Cas particuliers: 1) L'angle orienté nul:

$$\overline{(Ox;Ox)} = 0 + 2k\pi$$
 ou $\overline{(Ox;Ox)} = 0[2\pi]$

2)L'angle orienté plat : [Ox) et [Oy) opposées

$$\overline{(Ox;Oy)} = \pi + 2k\pi$$
 ou $\overline{(Ox;Oy)} \equiv \pi [2\pi]$

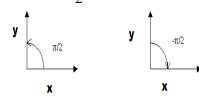


2)L'angle orienté droit direct

$$\overline{(Ox;Oy)} = \frac{\pi}{2} + 2k\pi$$
 ou $\overline{(Ox;Oy)} = \frac{\pi}{2} [2\pi]$

L'angle orienté droit indirect

$$\overline{(Ox;Oy)} = -\frac{\pi}{2} + 2k\pi$$
 ou $\overline{(Ox;Oy)} = -\frac{\pi}{2} [2\pi]$



Relation de Chasles pour les angles orientés de deux demi-droites

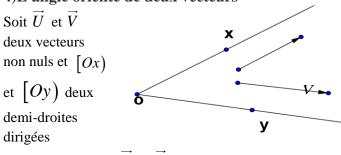
Soit [Ox] et [Oy] et [Oz] trois demi-droites d'origine O

On a:
$$\overline{(Ox;Oy)} + \overline{(Oy;Oz)} \equiv \overline{(Ox;Oz)} [2\pi]$$

Conséquence :

$$\overline{(Ox;Oy)} \equiv -\overline{(Oy;Ox)}[2\pi]$$

4)L'angle orienté de deux vecteurs



respectivement par U et V

Définition : l'angle orienté des vecteurs non nuls \overline{U} et Vdans cet ordre est l'angle orienté (Ox; Oy)

et on le note : $(\vec{U}; \vec{V})$

 \checkmark Les mesures de $(\overrightarrow{U};\overrightarrow{V})$ sont Les mesures de l'angle orienté (Ox; Oy)

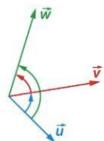
✓ La mesure principale de $(\overrightarrow{U}; \overrightarrow{V})$ est La mesure principale de (Ox; Oy) et on la note : $(\overrightarrow{U}; \overrightarrow{V})$

Propriétés: Pour tout vecteur *u* non nul, on a :

1)
$$(\vec{u}; \vec{u}) \equiv 0[2\pi]$$

2) $(\vec{u}; -\vec{u}) \equiv \pi[2\pi]$

Relation de Chasles pour les angles orientés de deux vecteurs:



Pour tous vecteurs u, v et wnon nuls, on a:

$$(\vec{u}; \vec{v}) + (\vec{v}; \vec{w}) \equiv (\vec{u}; \vec{w}) [2\pi]$$

Voici des propriétés sur les angles orientés que nous allons démontrer à l'aide de la relation de Chasles:

Propriété: On considère deux vecteurs non nuls \vec{u} et \vec{v} .

$$1.(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v}) + 2k\pi$$

$$(-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$$

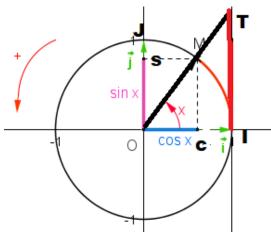
$$3.(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + 2k\pi$$

4.
$$(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$$
 où k est entier relatif

Démonstration:

III)Les rapports trigonométriques d'un nombre réel.

1)Repère orthonormé lié au cercle trigonométrique



Soit (C) un cercle trigonométrique de centre O et d'origine I et Soit J un point de ig(Cig) tel que L'angle orienté $(\overrightarrow{OI}; \overrightarrow{OJ})$ soit droit et direct

On a donc OI = OJ = 1 et $(OI) \perp (OJ)$

Le Repère orthonormé $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ est appelé Repère orthonormé lié au cercle trigonométrique (C)

2)Les rapports trigonométriques d'un nombre réel.

Soit $x \in \mathbb{R}$ il existe un point M de (C) unique tel que xest une abscisse curviligne de M

✓ Sinus et cosinus du nombre réel x Soit C le projeté orthogonal de M sur (OI)

Et soit S le projeté orthogonal de M sur (OJ)

Définitions:

- Le cosinus du nombre réel x est l'abscisse de M et on note
- Le sinus du nombre réel x est l'ordonnée de M et on note
- ✓ Tangente du nombre réel *x*

Soit (Δ) la droite tangente a (C) en I

Si $M \neq J$ et $M \neq J'$ alors la droite (OM) coupe la tangente (Δ) en un point T

Le nombre réel \overline{IT} l'abscisse de T sur l'axe (Δ) est appelé : La tangente du nombre réel x et on note tan x.

Remarques:

✓ Les rapports trigonométriques : $\cos x$ et $\sin x$ et $\tan x$. sont aussi appelés cosinus et sinus et tangente de l'angle orienté $(\overline{OI}; \overline{OM})$

$$\checkmark \tan x \text{ existe ssi } x \neq \frac{\pi}{2} + 2k\pi \text{ et } x \neq -\frac{\pi}{2} + 2k\pi$$

$$k \in \operatorname{cad} x \neq -\frac{\pi}{2} + k\pi$$

✓ La cotangente de x est le nombre réel x noté cotant x et

on a :
$$\cot x = \frac{1}{\tan x}$$

3) Cosinus, sinus et tangente d'angles remarquables :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Propriétés : Pour tout nombre réel x, on a :

- 1) $-1 \le \cos x \le 1$
- 2) $-1 \le \sin x \le 1$
- 3) $\cos^2 x + \sin^2 x = 1$ 4) $\cos x = \cos(x + 2k\pi)$ où $k \in$
- 5) $\sin x = \sin(x + 2k\pi)$ où k entier relatif

6) si
$$x \neq \frac{\pi}{2} + k\pi$$
 avec $k \in \text{alors} : \tan x = \frac{\sin x}{\cos x}$

7) si
$$x \neq \frac{\pi}{2} + k\pi$$
 avec $k \in \text{alors} : \tan(x + k\pi) = \tan x$

Démonstration : 4) et 5)

Remarque:

On dit que cosinus et sinus sont périodiques de période 2π .

Conséquence :

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

3)Propriétés de Cosinus, sinus et tangente

Pour tout nombre réel x, on a :

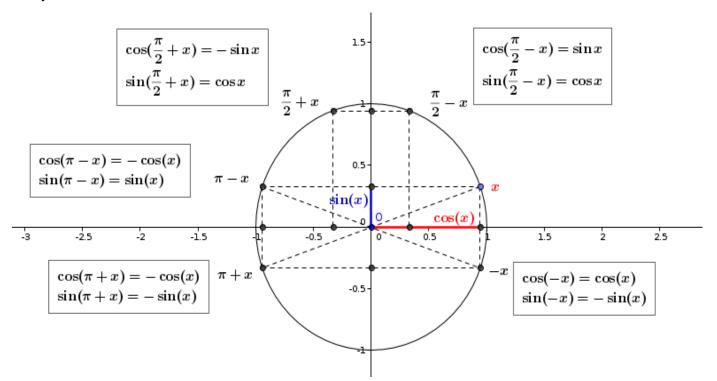
- 1) $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$
- 2) $\cos(\pi + x) = -\cos x$ et $\sin(\pi + x) = -\sin x$
- 3) $\cos(\pi x) = -\cos x$ et $\sin(\pi x) = \sin x$ 4)

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x \text{ et } \sin\left(\frac{\pi}{2} + x\right) = \cos x$$

5)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

- 6) $\tan(\pi x) = -\tan x$ et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$
- 7) $\tan(\pi x) = -\tan x$ et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$

Par symétries, on démontre les résultats :

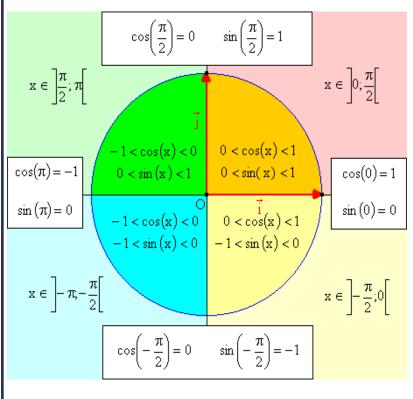


APPLICATION :Calculer les rapports trigonométriques des nombre réel suivantes 7π , $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{4}$, $-\frac{4\pi}{3}$

Exercice2: montrer que :_{1+(tan x)² = $\frac{1}{(\cos x)^2}$ si $x \neq \frac{\pi}{2} + \pi$}

4)Signe de Cosinus, sinus

Le sinus et le cosinus de tout nombre réel font partie de l'intervalle [-1; 1]. Plus précisément, la position de M nous permet d'en savoir plus sur le cosinus et le sinus de x. Ainsi :



Exercice 3: montrer que : $\tan x = \frac{1}{3}$ et $\frac{\pi}{2} < x < \pi$

Calculer: 1) $\cos x$ 2) $\sin x$

Exercice4: simplifier les expressions suivantes:

$$A = \sin(\pi - x) \times \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) \times \cos(\pi - x)$$

$$B = \frac{\sin x + \sin(\pi - x)}{\cos(\pi - x)}$$

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right)$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$E = \tan(\pi - x) + \tan(\pi + x)$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$$

Les équations trigonométriques élémentaires

1) Equation: $\cos x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1 alors l'équation $\cos x = a$ n'admet pas de solution dans et on a : $S = \emptyset$.

Si a = -1 alors on a l'équation $\cos x = -1$

On sait que : $\cos \pi = -1$ donc tous les réels de la

forme : $\pi + 2k\pi$ avec k un nombre relatif sont solution de l'équation dans et on a : $S = \{\pi + 2k\pi / k \in \mathbb{Z}\}$.

Si a=1 alors on a l'équation $\cos x=1$:

On sait que : $\cos 0 = 1$ donc tous les réels de la

forme : $0+2k\pi$ avec k un nombre relatif sont solution de l'équation dans et on a : $S = \{2k\pi / k \in \mathbb{Z}\}$.

Si -1 < a < 1 réels alors on a l'équation $\cos x = a$: Et on sait qu'il existe un unique réels : α dans $[0;\pi]$ tel que $\cos x = \cos \alpha$ et alors on a :

$$S = \left\{ \alpha + 2k\pi; -\alpha + 2k\pi / k \in \mathbb{Z} \right\} .$$

Exemple: Résoudre dans \mathbb{R} les équations suivantes :

a)
$$\cos x = \frac{\sqrt{2}}{2}$$

b)
$$\cos x = -\frac{1}{2}$$

a)
$$\cos x = \frac{\sqrt{2}}{2}$$
 b) $\cos x = -\frac{1}{2}$ c) $\cos^2 x = \frac{1}{2}$

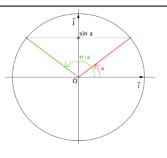
2)Equation: $\sin x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1

alors l'équation $\sin x = a$ n'admet has de solution

dans et on a : $S_{\mathbb{R}} = \emptyset$



Si a = -1 alors on a l'équation $\sin x = -1$ On sait

que : $\sin\left(-\frac{\pi}{2}\right) = -1$ donc les solution dans

l'équation sont : $S_{\mathbb{R}} = \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$.

Si a=1 alors on a l'équation : $\sin x = 1$ On sait

$$\operatorname{que}: \sin\left(\frac{\pi}{2}\right) = 1 \operatorname{donc} \operatorname{on} \operatorname{a}: S_{\mathbb{R}} = \left\{\frac{\pi}{2} + 2k\pi \, / \, k \in \mathbb{Z}\right\} \; .$$

Si -1 < a < 1 réels alors on a l'équation $\sin x = a$: Et on sait qu'il existe un unique réels : α dans

 $-\frac{\pi}{2}; \frac{\pi}{2}$ tel que $\sin x = \sin \alpha$ et alors on a :

$$S_{\mathbb{R}} = \left\{ \alpha + 2k\pi; \pi - \alpha + 2k\pi / k \in \mathbb{Z} \right\} .$$

Exemple: Résoudre dans R les équations suivantes:

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\sin x = -\frac{1}{2}$$
 c) $\sin^2 x = \frac{1}{2}$

c)
$$\sin^2 x = \frac{1}{2}$$

Exercice1: Résoudre dans $]-\pi,\pi]$ l'équation :

$$\cos 2x = \frac{\sqrt{3}}{2}$$

3) Equation : $\tan x = a$

Propriété: Soit a un nombre réel.

L'équation $\tan x = a$ est définie dans

$$x \in -\left\{\frac{\pi}{2} + k\pi\right\}$$
 avec k un nombre relatif

Donc
$$D = -\left\{\frac{\pi}{2} + k\pi; k \in \right\}$$

Dans D il existe un unique réel : α dans $\begin{bmatrix} -\pi \\ 2 \end{bmatrix}$

tel que $\tan x = \tan \alpha$ et alors on a :

$$S = \{ \alpha + k\pi / k \in \} .$$

Exercice2:1) Résoudre dans R l'équations suivantes $4 \tan x + 4 = 0$

2) Résoudre dans $\begin{bmatrix} -\frac{\pi}{2} \\ \frac{5\pi}{2} \end{bmatrix}$ l'équations suivantes :

$$2 \sin x + 2 = 0$$

Exercice3:1) Résoudre dans R l'équations

suivantes :
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$

2) Résoudre dans $[0; \pi]$ l'équations suivantes :

$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

3) Résoudre dans $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ l'équations suivantes :

$$\tan\left(2x-\frac{\pi}{5}\right)=1$$

II) Les inéquations trigonométriques élémentaires

Exemple1: Résoudre dans $[0,2\pi[$ l'inéquation

suivante : $\sin x \ge \frac{1}{2}$

Exemple2: Résoudre dans $]-\pi,\pi]$ l'inéquation

suivante : $\sin x \le -\frac{1}{2}$

Exemple3:

Résoudre dans $]-\pi,\pi]$ l'inéquation suivante :

$$\cos x \ge \frac{\sqrt{2}}{2}$$

Exemple4: Résoudre dans $\left|-\frac{\pi}{2}, \pi\right|$ l'inéquation

suivante : $\cos x \le \frac{1}{2}$

Exemple5: Résoudre dans $]-\pi,\pi]$ les inéquations

suivantes : 1) $\cos x \le 0$ 2) $\sin x \ge 0$

Exemple6: Résoudre dans $S = \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$

l'inéquation suivante : $tan x \ge 1$