: Prince Moulay Abdellah

Equations et inéquations et systèmes: I

Niveau: TCT-TCS: BIOF

Année: 2021-2022

I) Les équations et les inéquations du premier degré a une inconnue.

1°) Les équations du premier degré a une inconnue.

Définition : On appelle équations du premier degré a une inconnue toute équation de la forme : ax + b = 0 où les coefficients a, b sont des réels donnés et x est l'inconnue Résoudre l'équations c'est déterminer l'ensemble de toutes les solutions notées : S

Applications : Résoudre dans \mathbb{R} les équations suivantes :

1)
$$-2x + 22 = 0$$

1)
$$-2x + 22 = 0$$
 2) $3(2x+5) = 6x-1$

3)
$$4(x-2) = 6x - 2(x+4)$$

4)
$$2x + 3)^2 - (2x + 3)(x - 4) = 0$$
 5) $x^2 - 100 = 0$

6)
$$\frac{3}{x+2}$$
- $\frac{5}{x-2}$ =0

6)
$$\frac{3}{x+2} - \frac{5}{x-2} = 0$$
 7) $\frac{(x-7)(x+3)}{x^2-9} = 0$

8)
$$\frac{4^{x+2}}{x-3} = 5$$
 9) $|7x-10| = |6+3x|$ 10) $x^3 - 7x = 0$

Exercice : Résoudre dans \mathbb{R} les équations :

a)
$$\frac{3x+5}{x-1} = 0$$
 b) $\frac{(2x+1)(x-3)}{x-4} = 0$ c)

$$\frac{x^2 - 9}{x + 3} = 0$$
 d) $1 - \frac{x + 3}{x - 3} = \frac{2}{2 - x}$

2°) Les inéquations du premier degré a une inconnue.

a) Le signe du binôme ax+b $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

Résumé : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

	x	$-\infty$		$\frac{-b}{a}$		$+\infty$
	ax + b		signe de	0	signe de	
l			-a		\boldsymbol{a}	

Exemples :1) étudions le signe de : 3x+6

(coefficient de x positif)

2) étudions le signe de : -2x+12

(coefficient de x négatif)

b) Solution de l'inéquations du premier degré a une inconnue

Définition : On appelle inéquations du premier degré a une inconnue toute inéquation de la forme : $ax + b \ge 0$ ou $ax+b \le 0$ ou ax+b < 0 ou ax+b > 0 où les coefficients a, b sont des réels donnés et x est l'inconnue Résoudre l'inéquations c'est déterminer l'ensemble de toutes les solutions notées : S

Applications : Résoudre dans IR les inéquations suivantes

1)
$$-2x+12 > 0$$
 2) $5x-15 \le 0$

3)
$$4x^2 - 9 \ge 0$$
 4) $(1-x)(2x+4) > 0$

5)
$$\frac{5x-2}{1+3x} \ge 0$$
 6) $\frac{(2x+1)(5x-10)}{2x-6} \le 0$

Exercice : Résoudre dans $\mathbb R$ les inéquations suivantes :

1)
$$(3-6x)(x+2) > 0$$
 2) $\frac{2-6x}{3x-2} \neq 0$

Equations et inéquations et systèmes: II

Niveau: TCT-TCS: BIOF

Année : 2021-2022

IV) équation du second degré a une inconnue.

1)**Définition :** Une équation du second degré a une inconnue **-** est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \ne 0$.

Une solution de cette équation s'appelle une racine du trinôme $ax^2 + bx + c$.

Exemple : L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

2)Résolution d'une équation du second degré a une inconnue.

Activité :

Résoudre dans $\mathbb R$ les équations suivantes :

1)
$$x^2 = 16$$
 2) $x^2 = -8$ 3) $(x + 2)^2 = 9$

4)
$$5x^2 - 4x = 0$$
 5) $3x^2 - x - 2 = 0$

Cas général:

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2\frac{b}{2 \times a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right)$$
$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

On pose
$$\Delta = b^2 - 4ac$$
 et $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a^2}$

1)**Définitions**: Soit le du trinôme $ax^2 + bx + c$ avec $a \neq 0$.

✓ Le trinôme peut s'écrire sous la forme dite la forme canonique :

$$ax^{2} + bx + c = a \left[\left(x - \alpha \right)^{2} + \beta \right]$$

✓ On appelle d**iscriminan**t du trinôme $ax^2 + bx + c$, le nombre réel, noté $\Delta = b^2 - 4ac$.

Propriété1 : Les solutions dans ℝ de

l'équation x = a (Dépendent du signe de a)

- Si a < 0, alors l'équation n'a pas de solution.
- Si a = 0, alors l'équation possède une unique solution qui est 0.
- Si a > 0, alors l'équation possède deux solutions qui sont \sqrt{a} et $-\sqrt{a}$

Démonstration :

Exemple :Pour le trinôme $3x^2 - x - 2$

- a) Calculons le discriminant :
- b) déterminons la forme canonique :

Propriété2: soit l'équation $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$.

et soit Δ son discriminant

- Si $\Delta < 0$: L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle c a d : $S = \emptyset$

Et on ne peut pas factorisée le trinôme $ax^2 + bx + c$

- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une seule solution

(dite double): $x_0 = -\frac{b}{2a}$.

c a d: $S = \{x_0\}$ et le trinôme $ax^2 + bx + c$ a une forme

factorisée : $ax^2 + bx + c = a(x - x_0)^2$

- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ c a d : $S = \{x_1; x_2\}$

Et le trinôme $ax^2 + bx + c$ a une forme factorisée :

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

Démonstration:

3)La somme et le produit des racines d'un trinôme.

Proposition1: soit le trinôme $ax^2 + bx + c$ tel que son discriminant $\Delta > 0$

Si x_1 et x_2 sont les racines du trinôme alors :

$$x_1 + x_2 = \frac{-b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$

Proposition2: le système : (I) $\begin{cases} x + y = s \\ x \times y = n \end{cases}$ où les s, p

sont des réels donnés admet une solution dans $\,\mathbb{R}^{2}\,$ ssi $s^2 - 4p \ge 0$ et dans ce cas x, y sont solutions de l'équation $x^2 - sx + p = 0$

4) le discriminant réduit d'un trinôme.

Soit le trinôme $ax^2 + bx + c$

Si b est pair c a d b=2b' on parle du discriminant réduit

$$\Delta' = b'^2 - ac$$
 et on a :

- Si $\Delta' < 0$: pas de solution réelle c a d : $S = \emptyset$

- Si $\Delta' = 0$: L'équation a une seule solution (dite double):

 $x_0 = -\frac{b'}{a}$.

- Si $\Delta' > 0$: L'équation a deux solutions distinctes :

$$x_1 = \frac{-b' - \sqrt{\Delta'}}{a}$$
 et $x_2 = \frac{-b' + \sqrt{\Delta'}}{a}$

Applications : Résoudre les équations suivantes et Factoriser les trinômes :

a)
$$2x^2 - x - 6 = 0$$

b)
$$2x^2 - 3x + \frac{9}{8} = 0$$

c)
$$x^2 + 3x + 10 = 0$$

d)
$$6x^2 - x - 1 = 0$$

Applications: Résoudre dans \mathbb{R} les équations suivantes

1)
$$6x^2 - 7x - 5 = 0$$
 2) $2x^2 - 2\sqrt{2}x + 1 = 0$

3)
$$3x^2 + x + 2 = 0$$
 4) $4x^2 - 8x + 3 = 0$

5)
$$x^2 - 4x + 2 = 0$$
 6) $x^2 + 5x + 7 = 0$

7)
$$2x^2 - 4x + 6 = 0$$
 8) $x^2 - 4x - 21 = 0$

9)
$$3x^2 - 6x + 3 = 0$$

Exercice1: Factoriser les trinômes:

a)
$$4x^2 + 19x - 5$$
 b) $9x^2 - 6x + 1$

b)
$$9x^2 - 6x + 1$$

Exercice 2: Résoudre dans \mathbb{R} l'équation (E) :

$$\frac{x-2}{2x^2-3x-2} - \frac{x^2}{2x^2+13x+6} = 0$$

Exemple : soit le trinôme $2019x^2 - 2020x + 1$

- a) vérifier que 1 est racine du trinôme
- b) trouver l'autre racine du trinôme

Exemple: soit le trinôme (T): $-2x^2 + \sqrt{2}x + 2$

- 1) prouver que le trinôme (T) admet deux racines distinctes α et β sans les calculer
- 2) Déduire les valeurs suivantes : $\alpha + \beta$; $\alpha \times \beta$; $\frac{1}{\alpha} + \frac{1}{\beta}$;

$$\alpha^2 + \beta^2; \frac{\beta}{\alpha} + \frac{\alpha}{\beta}; \alpha^3 + \beta^3$$

Exemple : Résoudre dans \mathbb{R}^2 le système : $\begin{cases} x + y = 5 \\ x \times v = 4 \end{cases}$

Applications : Résoudre l'équations suivantes : $x^2 - 22x - 23 = 0$

V) Inéquation du second degré a une inconnue.

1) **Définition**: on pose : $P(x) = ax^2 + bx + c$

Une inéquation du second degré a une inconnue est une inéquation de la forme $P(x) \ge 0$ ou P(x) > 0 ou

$$P(x) \le 0$$
 ou $P(x) < 0$

2) Signes du trinôme : $ax^2 + bx + c$. $a \ne 0$

Si $\Delta < 0$: On a vu que le trinôme $ax^2 + bx + c$ avec $a \neq 0$

peut s'écrire sous la forme :
$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

et puisque
$$\Delta < 0$$
 Donc : $-\Delta > 0$ Alors $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$

et par suite : le trinôme $ax^2 + bx + c$ est du signe de a

Si
$$\Delta = 0$$
: On a: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$ et puisque

$$\left(x + \frac{b}{2a}\right)^2 \ge 0$$
 Alors le trinôme $ax^2 + bx + c$ est du signe

de *a* pour
$$x \neq \frac{-b}{2a}$$

L'équation
$$ax^2 + bx + c = 0$$
 peut s'écrire : $\left(x + \frac{b}{2a}\right) = 0$

- Si
$$\Delta > 0$$
: on a: $ax^2 + bx + c = a(x - x_1)(x - x_2)$

x	$-\infty$	x1		x2	$+\infty$
x-x1	_		_	þ	+
x-x2	_	þ	+		+
(x-x1)(x-x2)	+	þ	_	Q	+

Donc on a:

Résumé:

Si $\Delta > 0$ le trinôme $ax^2 + bx + c$ est du signe de aa l'extérieur des racines et le signe contraire de a entre les racines

\boldsymbol{x}	$-\infty$		x_1		x_2		$+\infty$
f(x)		$_{ m Signe}$	0	Signe		Signe de	
J(x)		de a	ľ	de -a	ľ	$\mathrm{de}\;a$	

ightharpoonup Si $\Delta < 0$: le trinôme $ax^2 + bx + c$ est du signe de a

\boldsymbol{x}	$-\infty$		$+\infty$
f(x)		Signe de a	

Si $\Delta = 0$: le trinôme $ax^2 + bx + c$ est du signe de a

\boldsymbol{x}	$-\infty$		x_0		$+\infty$
f(x)		Signe	0	Signe	
J (2)		de a	ľ	de a	

Exemple: Résoudre les inéquations suivantes:

a)
$$2x^2 - 3x + 1 \ge 0$$

a)
$$2x^2 - 3x + 1 \ge 0$$
 b) $-2x^2 + 4x - 2 \ge 0$ c)

$$3x^2 + 6x + 5 < 0$$

Exercice 3: Résoudre les inéquations suivantes :

a)
$$3x^2 + 6x - 9 > 0$$

a)
$$3x^2 + 6x - 9 > 0$$
 b) $x^2 + 3x - 5 < -x + 2$ c)

$$\frac{1}{x^2 - x - 6} \ge 2$$

Exercice4: Résoudre les inéquations suivantes:

a)
$$2x^2 - 4x + 6 \ge 0$$
 b) $4x^2 - 8x + 3 \le 0$

b)
$$4x^2 - 8x + 3 \le 0$$

c)
$$x^2 - 3x - 10 < 0$$

Exercice 5: Résoudre les équations et les inéquations

suivantes: 1)
$$(x-1)^2 = 9$$
 2) $(x-1)^2 \le 9$ 3) $\frac{x-1}{x} = \frac{2}{3}$

$$4) \frac{x-1}{x} \le \frac{2}{3}$$

Exercice6: soit le polynôme suivant (E):

$$P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$$

1)Montrer que 1 est racine du polynôme P(x)

2)Montrer que
$$P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$$

3)On pose :
$$Q(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}$$
 et soit Δ son discriminant

a) Vérifier que :
$$\Delta = (\sqrt{2} - 1)^2$$

b) Résoudre dans \mathbb{R} l'équation Q(x) = 0

4)en déduire les solutions de

l'équation
$$x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$$

- 5) Résoudre dans \mathbb{R} l'équation P(x)=0
- 6) Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$

Exercice7: soit l'équation E:

$$x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6} = 0$$
 et soit Δ son discriminant

1) Vérifier que :
$$\Delta = \left(2\sqrt{3} + \sqrt{2}\right)^2$$

- 2) Résoudre dans \mathbb{R} l'équation (E)
- 3) Résoudre dans \mathbb{R} l'équation P(x)=0
- 4) Résoudre dans \mathbb{R} l'inéquation P(x) > 0

5)en déduire les solutions de

l'équation
$$x + \left(2\sqrt{3} - \sqrt{2}\right)\sqrt{x} - 2\sqrt{6} = 0$$

Lycée

Equations et inéquations et systèmes: III

III) Système de deux équations du premier degré à deux inconnues

Définition : On appelle système de deux équations du premier degré a deux inconnues toute système de la forme :

: Prince Mbulay Abdellah

$$(I) \begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 où les coefficients a, b, c, d sont des

réels donnés et le couple (x, y) est l'inconnue dans

Résoudre le système (I) c'est déterminer l'ensemble S des solutions c a d l'ensemble des couples (x, y) qui vérifient

les deux équations: ax + by = c et a'x + b'y = c'simultanément

Remarque : pour Résoudre un système (I) on utilise généralement quatre méthodes :

- Méthode de substitution
- Méthode de combinaison linéaire ou addition
- Méthode des déterminants
- Méthode graphique

1) Méthode de substitution :

Substituer, c'est remplacer par (Mettre à la place de).

2) Méthode de combinaison linéaire ou méthode par addition.

Cette méthode consiste à faire apparaître des coefficients opposés pour l'une des inconnues, en multipliant les équations par des facteurs bien choisis. En additionnant membre à membre les deux équations transformées, on obtient une équation à une seule inconnue que l'on peut résoudre.

Remarque: Un système peut n'avoir aucune solution ou encore une infinité de solutions.

Soit le système :
$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
. Si les coefficients

de x et de y sont proportionnels, c'est-à-dire si ab' = a'b, ce système a une infinité de solutions ou pas de

- si de plus $ac' \neq a'c$, alors le système n'a pas de solution ; $-\sin ac' = a'c$ (les coefficients des deux équations sont proportionnels), alors le système a une infinité de solutions.

Exemple : Résoudre le système dans

Exemple: Résoudre le système dans

Exercice1 : Résoudre le système dans \mathbb{R}^2 : $\int 3x + y = 5$ $\int 2x - 3y = -4$

3) Méthode graphique

Résoudre graphiquement le système $\begin{cases} 3x + y = 5 \\ 2x - 3y = -4 \end{cases}$

Les équations du type ax + by = c correspondent en fait à des équations de droite.

La solution du système correspond aux coordonnées, dans un repère, du point d'intersection des deux droites. on a tracé les deux droites associées au système

On lit les coordonnées du point d'intersection (1, 2)

donc
$$S = \{(1,2)\}$$

On distingue alors trois cas dans la résolution des systèmes graphiquement:

- Si les droites sont parallèles et distinctes, le système (S) n'admet aucun couple solution.
- Si les droites) sont sécantes, le système (S) admet une solution unique.
- Si les droites sont confondues, alors le système (S) admet une infinité de couples solutions.

4) Méthode des déterminants

Définition : soit le système de deux équations a deux —

inconnues suivant : (I)
$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$

Le nombre réel noté : $\Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b$

S'appelle le déterminant du système (I)

Le critère suivant permet d'en savoir plus long sur le nombre de solutions d'un système....

Proposition : soit le système de deux équations à deux inconnues suivant:

$$(I) \begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 et Δ son déterminant

1)Si $\Delta \neq 0$ alors le système (I) admet un couple solution unique

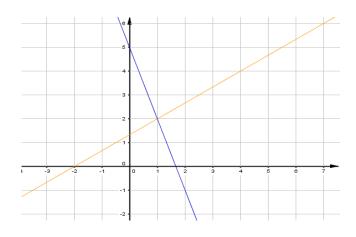
$$x = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{\Delta} = \frac{cb' - c'b}{\Delta} \qquad y = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{\Delta} = \frac{ac' - a'c}{\Delta}$$

2)Si $\Delta = 0$ alors:

✓ Si $\Delta_x = 0$ et $\Delta_y = 0$ alors :les deux équations ax + by = c et a'x + b'y = c' sont équivalentes et dans ce cas Résoudre le système c'est Résoudre l'une des équations par exemple en choisi : ax + by = c et alors

on a:
$$S = \left\{ \left(x; \frac{c - ax}{b} \right) / x \in \mathbb{R}; b \neq 0 \right\}$$

 \checkmark Si $\Delta_x \neq 0$ ou $\Delta_y \neq 0$ alors le système (I)n'admet aucun couple solutions et donc $S = \emptyset$



Exemple :Résoudre dans \mathbb{R}^2 les systèmes suivants

Exemple : Résoudre dans
$$\mathbb{R}^2$$
 les systèmes
$$\begin{cases}
3x - y = 5 \\
1) \left(2x + 4y = -6
\end{cases} & \begin{cases}
8x + 4y = 4 \\
2x + y = 3
\end{cases} \\
\begin{cases}
\sqrt{2}x - y = \sqrt{2} \\
2x - \sqrt{2}y = 2
\end{cases} & \begin{cases}
4x + 2y = -2 \\
x - 3y = -11 \\
2x + 4y = 8
\end{cases} \\
5) (I) \begin{cases}
x - 2y = 1 \\
3x + y = 2 \\
x - y = 3
\end{cases}$$

Applications : RÉSOLUTION DE PROBLÈMES

L'association des Enfants Heureux organise une course. Chaque enfant a un vélo ou un tricycle. L'organisateur a compté enfants et

- 1. Combien de vélos et combien de tricycles sont engagés dans cette course?
- 2. Chaque vélo engagé rapporte 500 F et chaque tricycle 400 F. Calculer la somme que l'association des Enfants Heureux recevra.

Exercice2:1. On considère le système suivant :

$$\begin{cases} 45x + 30y = 510 \\ 27x + 20y = 316 \end{cases}$$

- a. Les nombres x = 10 et y = 2 sont-ils solutions de ce système?
- b. Résoudre le système.
- 2. Pour les fêtes de fin d'année, un groupe d'amis souhaite emmener leurs enfants assister à un spectacle.

Les tarifs sont les suivants :

- 45 dh par adulte et 30 par enfant s'ils réservent en catégorie 1.
- 27 dh par adulte et 20 dh par enfant s'ils réservent en catégorie 2.

Le coût total pour ce groupe d'amis est de 510 dh s'ils réservent en catégorie 1 et 316 euros s'ils réservent en catégorie 2.

Déterminer le nombre d'adultes et d'enfants de ce groupe?

Exercice3: Résoudre dans \mathbb{R}^2 les systèmes suivants

1)
$$\begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases}$$
 2)
$$\begin{cases} 3x - 4y = 2 \\ -x + \frac{4}{3}y = -\frac{1}{3} \end{cases}$$

$$\begin{cases} (\sqrt{5} - \sqrt{3})x + (\sqrt{2} - 1)y = 0 \\ (\sqrt{2} + 1)x + (\sqrt{5} + \sqrt{3})y = 1 \end{cases} = 4 \end{cases} \begin{cases} x + y = 11 \\ x^2 - y^2 = 44 \end{cases}$$

Exercice4:1) Résoudre dans \mathbb{R}^2 les systèmes suivants:

$$\begin{cases} -7x - 3y = 4\\ 4x + 5y = -2 \end{cases}$$

2)en déduire les solutions du système suivant :

$$\begin{cases} \frac{-7}{x} - \frac{3}{y} = 4\\ \frac{4}{x} + \frac{5}{y} = -2 \end{cases}$$

Exercice5 : résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} \frac{5}{x-1} + \frac{3}{y-2} = 4 \\ \frac{-2}{x-1} + \frac{1}{y-2} = 1 \end{cases}$$

Exercice6 : résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} 2\sqrt{x} + \sqrt{y} = 6\\ -3\sqrt{x} + 5\sqrt{y} = 17 \end{cases}$$

Exercice7: résoudre dans \mathbb{R}^2 le système suivant :

$$\begin{cases} 2x^2 - 5y^2 = 1\\ 4x^2 + 3y^2 = 15 \end{cases}$$

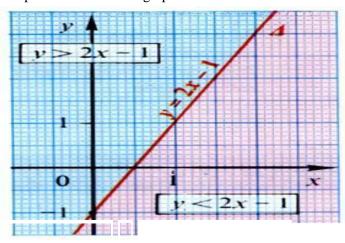
5)les inéquations du premier degré avec deux inconnues.

Activité : résoudre dans \mathbb{R}^2 l'inéquation : y -2x + 1 > 0 Soit l'équation y -2x + 1 = 0

on trace de la droite d'équation y = 2x - 1.

Cette droite partage le plan en deux demi-plans.

On peut observer sur le graphe ci-contre :



Remarques :Si la droite passe par l'origine, on 'essaie » un autre point bien choisi.

Si l'inégalité est au sens large, on doit « ajouter » aux points du demi -plan les points de la droite « frontière ».

Application : Exemple1 :

Résoudre Dans \mathbb{R}^2 l'inéquation : 2x - y - 2 < 0

Exemple2: d'application:

Résoudre Dans \mathbb{R}^2 l'inéquation : $x-y-3 \ge 0$

Exemple3: d'application:

Résoudre Dans \mathbb{R}^2 l'inéquation : 2x - y < 0

Exemple4: Résoudre Dans \mathbb{R}^2

l'inéquation : 3x + 2y < 2x + 2y - 1

Exemple5 : Résoudre Dans \mathbb{R}^2 le système d'inéquations

suivant:
$$(S)$$

$$\begin{cases} x+y-1 \ge 0 \\ -x+2y+2 \le 0 \end{cases}$$

Exemple6 : Résoudre Dans \mathbb{R}^2 le système d'inéquations

suivant:
$$(S)$$

$$\begin{cases} 2x + y - 3 \ge 0 \\ -x + y + 5 \le 0 \end{cases}$$

Exemple7 : Résoudre Dans \mathbb{R}^2 le système d'inéquations

suivant:
$$(S)$$

$$\begin{cases} 3x + 2y - 6 < 0 & (1) \\ x - 2y + 2 < 0 & (2) \\ 4x - 3y + 12 > 0 & (3) \end{cases}$$