Professeur: Rachid BELEMOU

Cours

Lycée : Prince Mbulay Abdellah

Les ensembles IN, Z, ID, Q, IR

Niveau: TCT-TCS: BIOF

Année: 2021-2022

I.Ensembles de nombres.

Il existe différentes sortes de nombres. Pour les classer, on les a regroupés dans différents ensembles remarquables :

1°) L'ensemble des entiers naturels.

Rappel de notations : $\mathbb{N} = \{0 ; 1 ; 2 ; ... ; n ; ... \}$, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ (privé de 0).

2°) L'ensemble des entiers relatifs : _

Tous les entiers qu'ils soient négatifs, positifs ou nuls, sont des entiers relatifs

L'ensemble des entiers relatifs est noté \mathbb{Z} . Tous les entiers naturels sont des entiers relatifs. On dit alors que l'ensemble \mathbb{N} est inclu dans l'ensemble \mathbb{Z} Cette inclusion est notée : $\mathbb{N} \subseteq \mathbb{Z}$ Le symbole \mathbb{Z} signifie "est inclu dans".

$$notations: \mathbb{Z} = \{ \dots \; ; \; \text{-3} \; ; \; \text{-2} \; ; \; \text{-1} \; ; \; 0 \; ; \; 1 \; ; \; 2 \; ; \; 3 \; ; \; \dots \; \}$$

$$\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$$
 (privé de 0);

3°) L'ensemble des décimaux. □ -

Par exemple, -3,89 et 5,2 sont des décimaux. Ils peuvent être négatifs ou positifs.

Les entiers relatifs sont aussi des décimaux.

En effet :-4 = -4,000

on dit alors que l'ensemble z est inclu dans l'ensemble.

Ce qui se note : **ℤ**⊏**D**

donc on a:

$$D = \left\{ a \times 10^{-n} = \frac{a}{10^n} / a \in \mathbb{Z}; n \in \mathbb{N} \right\} \text{ Écriture en compréhension}$$

4°) L'ensemble des rationnels. \mathbb{Q} —

Les nombres rationnels sont les fractions de la forme p/q où p et q sont des entiers (non nul pour q).

Par exemple, 2/3 et -1/7 sont des rationnels.

Tous les nombres décimaux sont des nombres rationnels exemple 1,59. C'est en fait le quotient des entiers 159 et 100 car 159 / 100 = 1,59.

De même, tous les entiers sont des décimaux. Prenons l'exemple de -4. On peut dire que -4 est le quotient de -4 et de 1 car -4 / 1 = -4.

On résume cela par :

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z}; b \in \mathbb{N}^* \right\} \quad \text{\'Ecriture en compr\'ehension}$$

$$\frac{1}{3}$$
 = 0.333333..... est rationnel mais $\frac{1}{3} \notin D$

Remarque1 : un rationnel non décimal a une écriture décimale périodique infinie :

$$\frac{17}{7}$$
 = 2.4285714285714285714285714285714...;

428571 se répète

Remarque2:
$$\sqrt{2} \notin Q$$
; $\frac{\sqrt{3}}{2} \notin Q$; $\pi \notin Q$

Exemple: -45, -1, 0 et 56 sont des entiers relatifs.

Exemples : Les nombres $\frac{54}{40}, \frac{126}{450}, \frac{75}{90}$ sont-ils des décimaux

5°) L'ensemble des réels.

Tous les nombres utilisés en Seconde sont des réels. Cet ensemble est noté IR.

Remarque1: Parmi les nombres réels, il y a les entiers naturels, les entiers relatifs, les nombres décimaux, les nombres rationnels. Les nombres réels qui ne sont pas rationnels sont appelés nombres irrationnels.

Et on a : $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$

Remarque2 : un irrationnel a une écriture décimale non périodique infinie :

Par exemple: 1.4142135623730950488016887242097 ...

Remarque3:

- « soit x un nombre quelconque » sera désormais remplacé par : « soit $x \in IR$ » ou « soit x un nombre réel »
- Le signe * placé en haut à droite de la lettre désignant un ensemble de nombres, prive celui-ci de zéro.

Ainsi **IR*** désigne les réels non nuls.

- Le signe + ou - placé en haut à droite de la lettre désignant un ensemble de nombre, prive celui-ci des nombres négatifs positifs

Ainsi **IR**⁺ désigne l'ensemble des réels positifs (avec zéro) **IR**⁻ désigne l'ensemble des réels négatifs (avec zéro)

II) opérations et règles de calcul dans l'ensemble des nombres réels

 $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et $c \in \mathbb{R}$ et $k \in \mathbb{R}$

a+b=b+a; a+(b+c)=(a+b)+c=a+b+c

−a L'opposé de a

(-a)+a=a+(-a)=0 et a+0=0+a=a

a-b=a+(-b) et -(a-b)=-a+b $a \times b = b \times a = ab = ba$ et a(bc)=(ab)c=(ac)b=abc

Si: $a \neq 0$; $a \times \frac{1}{a} = 1$ $\frac{1}{a}$ l'inverse de a et $\frac{a}{b} = a \times \frac{1}{b}$ k(a+b) = ka+kb et k(a-b) = ka-kb

(a+b)(c-d) = ac-ad+bc-bd

Si $bd \neq 0$ $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ et $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ et $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

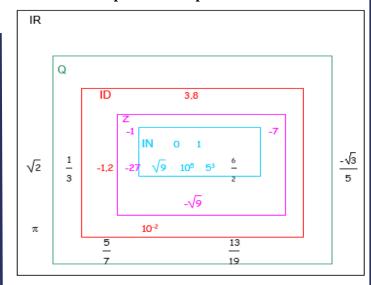
 $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$ et $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$ et $k \times \frac{a}{b} = \frac{ak}{b}$

 $\frac{a}{\underline{b}} = a \times \frac{c}{b} = \frac{ac}{b}; bc \neq 0 \text{ et } \frac{\overline{b}}{\underline{c}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

Si on a: $\begin{cases} a=b \\ c=d \end{cases}$ alors a+c=b+d

Si $bd \neq 0$ $\frac{a}{b} = \frac{c}{d}$ si et seulement si ad=bc

Représentation par ensembles



Exercice1: compléter par $: \in ; \notin ; \subset ; \not\subset$

$$6...\mathbb{Z}$$
; $\frac{2}{3}...\mathbb{Q}$; $\sqrt{2}...\mathbb{Q}$; $\sqrt{2}...\mathbb{R}$; $\mathbb{Q}...\mathbb{R}$; $\mathbb{N}...\mathbb{Q}$;

$$-\frac{2}{3}...\mathbb{R}^{+}\;;\frac{2}{3}...\mathbb{N}\;;\frac{6}{2}...\mathbb{N}\;;\frac{\sqrt{100}}{5}...\mathbb{N}\;;\,\mathbb{Q}...\mathbb{Z}\;;\,\mathbb{Z}...\mathbb{Q}\;;$$

$$\pi...\mathbb{Z}$$
; $0...\mathbb{Q}^*$; $-\frac{7}{3}...\mathbb{Q}^{+*}$; $\sqrt{16}...\mathbb{N}$; $0...\mathbb{R}^*$;

$$\{1;3;-8\}...\mathbb{N} \; ; \; \mathbb{R}^+...\mathbb{R} \; ; \; \frac{1}{2}...D \; ; \; \frac{1}{3}...D$$

Exercice 2: calculer et_simplifier : $A = \frac{3}{4} + \frac{5}{3} - \frac{7}{6}$

$$B = \frac{-2}{3} + \frac{7}{6} - \frac{1}{4} - 2 \quad C = \left(\frac{2}{3} - \frac{5}{2}\right)^2 \quad D = \frac{5 + \frac{1}{3}}{2 - \frac{3}{2}}$$

$$E = \left(1 - \frac{1}{3}\right) \left(\frac{2}{5} + 1 - \frac{1}{2}\right) \qquad F = \frac{7 - \frac{4}{\pi}}{12 - 21\pi}$$

$$G = \left[\left(a - c \right) - \left(a - b \right) \right] - \left[\left(c - a \right) + \left(b - c \right) \right]$$

III)Racine carrée

Activité: On considère un triangle ABC rectangle en A

1) Sachant que AB = 3 cm et AC = 4 cm,

- a) Calculer la valeur exacte de BC.
- b) Quels sont les nombres qui ont pour carré 25
- ? Pourquoi a-t-on BC = 5 ?
- c) Compléter la phrase suivante :
- « BC est le nombre positif dont le carré est ... »
- 2)On suppose maintenant que AB = 2 cm et AC = 3 cm.
- « BC est le nombre positif dont le carré est ... »

Rechercher la valeur exacte de BC

On dira que la valeur exacte de BC est la racine carrée de 13 que l'on notera $\sqrt{13}$

3)Peut-on obtenir la racine carrée de -16?

La racine carrée d'un nombre négatif existe-t-elle ?

<u>Définition</u>: a est un nombre **positif**. La **racine carrée** de **—**

a, notée \sqrt{a} , est le nombre positif dont le carré est Égal à a.

Quelques valeurs exactes à connaître :

a	0	1	4	9	16	25	36	49	64	81	100
√a	0	1	2	3	4	5	6	7	8	9	10

Propriétés : soient a et b deux nombres positifs ou nuls

1)
$$(\sqrt{a})^2 = \sqrt{a^2} = a$$
 2) $(\sqrt{a})^n = \sqrt{a^n}; n \in \mathbb{N}^*$

3)
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
 4) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}; b > 0$

Remarque: $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

En effet: $\sqrt{9+16} \neq \sqrt{9} + \sqrt{16} \text{ car}$: $\sqrt{9+16} = \sqrt{25} = 5$

Et
$$\sqrt{9} + \sqrt{16} = 3 + 4 = 7$$

Propriété: $x \ge 0$ et $y \ge 0$

$$\sqrt{x} = \sqrt{y}$$
 ssi $x = y$

Propriété : $a \in \mathbb{R}^+$

$$x^2 = a \text{ si et seulement si } x = \sqrt{a} \text{ ou } x = -\sqrt{a}$$

IV)Les Puissances

1)Définition et notations : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ et $n \in \mathbb{N}^*$

Le produit de n facteurs égaux à a et noté a^n et s'appelle la puissance $n^{-i \hat{e} m \hat{e}}$ de a » ; n est appelé exposant :

$$a^n = \underbrace{a \times a \times a \times \cdots \times a}_{n : j = a}$$
 Cas particulier: $a^1 = a; a^0 = 1$

et on a :
$$a^{-n} = \frac{1}{a^n}$$
 En particulier : Pour $a \neq 0$ $a^{-1} = \frac{1}{a}$

$$10^n = \underbrace{1000 \cdots 0}_{n}; n \in \mathbb{N} \text{ (n zéros)}$$

$$10^{-n} = \underbrace{0,000\cdots01}_{n}; n \in \mathbb{N} \text{ (n zéros)}$$

$$10^{1} = 10$$
; $10^{-1} = 0.1$; $10^{-2} = 0.01$; $10^{0} = 1$

exemple:
$$\sqrt{4} = 2$$
; $\sqrt{0} = 0$
 $\sqrt{1} = 1$; $\sqrt{4} = 2$; $\sqrt{9} = 3$; $\sqrt{16} = 4$; ... $\sqrt{225} = 15$
 $\sqrt{1,5625} = 1,25$; $\sqrt{360000000} = 60000$

Un nombre négatif n'a pas de racine carrée.

Exemple: résoudre l'équation suivante $x^2 = 100$

Exercice 3: calculer et_simplifier:

$$A = \sqrt{\frac{9}{2}}$$
; $B = \frac{\sqrt{28}}{\sqrt{14}}$; $C = 3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180}$

$$D = (\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} + \sqrt{2} + \sqrt{5}) : E = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt{5}}$$

Exercice 4 : soit
$$E = \frac{5\sqrt{7}}{\sqrt{2} - \sqrt{7}} + \frac{5\sqrt{2}}{\sqrt{2} + \sqrt{7}}$$

Montrer que : E est nombre entier relatif

Exercice 5: calculer et_simplifier

$$A = \sqrt{2 - \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2}$$

Exercice6 : Rendre le dénominateur rationnel du quotient

suivant:
$$A = \frac{1}{\sqrt{2}-1}$$

2)Propriétés des puissances : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et $n \in \mathbb{N}^*$; $m \in \mathbb{N}^*$

$$\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}; a^{n} \times b^{n} = \left(ab\right)^{n}; \left(a^{n}\right)^{m} = a^{nm}; a^{n} \times a^{m} = a^{n+m};$$

$$\frac{a^{n}}{a^{m}} = a^{n-m}$$

- **3)Remarque : a)** La puissance d'un nombre négatif est positive si l'exposant est pair
- b) La puissance d'un nombre négatif est négative ... l'exposant est impair.

Ex:
$$(-1)^{2020} = 1^{2020} = 1$$
 et $(-1)^{2019} = -1^{2019} = -1$

4°) Écriture scientifique d'un nombre décimal

La notation scientifique d'un nombre décimal est de la forme $a \times 10^p$ où a est un nombre décimal ($1 \le a < 10$) et p un nombre entier relatif.

$$593.7 = 5.937 \times 10^{2}$$
 et $7300 = 7.3 \times 10^{3}$
 $2328423 = 2.328423 \times 10^{6}$ et $-0.051 = -5.1 \times 10^{-2}$

 $-0.00032 = -3.2 \times 10^{-4}$ sur la calculatrice -3.2 E-4

V) Identités remarquables : $a \in \mathbb{R}$ et $b \in \mathbb{R}$ —

1)
$$(a+b)^2 = a^2 + 2ab + b^2$$
 2) $(a-b)^2 = a^2 - 2ab + b^2$
3) $a^2 - b^2 = (a-b)(a+b)$ 4) $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$
5) $a^3 + b^3 = (a+b)(a^2 - ab - b^2)$ Somme de deux cubes
6) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ Cube d'une Somme
7) $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Cube d'une différence

Ces formules sont pour **développer** et pour **factoriser** <u>Factorise</u>r une expression, c'est l'écrire sous la forme d'un **produit**.

Méthodes: Pour factoriser une expression, on doit:

- identifier une identité remarquable ou
- identifier un facteur commun

Attention : on ne peut pas toujours factoriser une expression exemple : $16x^2 + 8x + 3 = (4x+1)^2 + 2$; cette expression ne peut pas être factorisée sous la forme d'un produit de deux facteurs de degré 1

Exercice7 : simplifier et écrire sous forme d'une puissance

$$A = 2^{3} \times (2^{2})^{4} \times (2^{-5})^{3} \qquad B = (-3)^{1} \times (-3)^{5} \times (3)^{2} \times (-3)^{-10}$$

$$C = \frac{3^{-5} \times 4^{-2}}{12^{3}} \times \frac{9}{2^{2}} \qquad D = \frac{(-2)^{3} \times (4^{2})^{-1} \times 8}{1024 \times (-16)^{-4}}$$

$$E = \frac{10^{-8} \times 10^{9} \times 10^{7} \times 10^{-4}}{10^{-2} \times 10^{3} \times 10^{5}}$$

Exercice 8 : Ecrire en notation scientifique le nombre

 $A = 9 \times 10^{-3} + 0.4 \times 10^{-2} - 9 \times 10^{-4}$ en mettant d'abord 10^{-4} en facteur et sans utiliser de calculatrice.

Exemple1: $x \in \mathbb{R}$ développer et calculer et simplifier $A = (\sqrt{5} + \sqrt{2})^2 - (\sqrt{5} - \sqrt{2})^2$ et $B = [(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})]^2$ $C = (\sqrt{2} + 1)^3$ $D = (3x - 2)^3$ $E = (x + 2)(x^2 - 2x + 4)$ $F = (200520052006)^2 - (200520052005 \times 200520052007)$

Exemple2: Factoriser les expressions suivantes : $x \in \mathbb{R}$ 1) $49x^2 - 81$ 2) $16x^2 - 8x + 1$ 3) $x^3 - 8$ 4) $C = (a + 1) (2a - 3) + 6(a + 1) D = 27x^3 + 1$

Exercice9: Remplissez les blancs suivants :

$$10-4\sqrt{6} = (...-..)^2$$
 et $4+2\sqrt{2} = (...+...)^2$

Exercice 10: $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et $a \ge b$

Montrer que : $\sqrt{a+\sqrt{a^2-b^2}} = \frac{\sqrt{2}}{2} \left(\sqrt{a-b} + \sqrt{a+b}\right)$

Exercice 11: Factoriser les expressions suivantes : $x \in \mathbb{R}$ $A = 16x^2 - 8x + 1$; $B = 16 - 25x^2$; $C = 1 - (1 - 3x)^2$

$$D = (2x-1)^3 - 8$$
; $E = 27 + x^3$; $F = x^{12} - 2x^6 + 1$

$$H = x^3 + 1 + 2(x^2 - 1) - (x + 1)$$
 et $G = x^5 + x^3 - x^2 - 1$

Professeur: Rachid BELEMOU

Lycée : Prince Moulay Abdellah

Exercices Les ensembles IN, Z, ID, Q et IR

Niveau: TCT-TCS: BIOF

Année : 2021-2022

Exercice1: Les nombres : $\frac{54}{40}$, $\frac{126}{450}$, $\frac{75}{90}$, $\frac{17}{7}$, $\frac{1}{3}$

Sont-ils des décimaux ?

Exercice2: Compléter par : \in ; $\not\subset$; $\not\subset$

$$6...\mathbb{Z}$$
; $\frac{2}{3}...\mathbb{Q}$; $\sqrt{2}...\mathbb{Q}$; $\sqrt{2}...\mathbb{R}$; $\mathbb{Q}...\mathbb{R}$; $\mathbb{N}...\mathbb{Q}$;

$$-\frac{2}{3}...\mathbb{R}^{+}; \frac{2}{3}...\mathbb{N}; \frac{6}{2}...\mathbb{N}; \frac{\sqrt{100}}{5}...\mathbb{N}; \mathbb{Q}...\mathbb{Z}; \mathbb{Z}...\mathbb{Q};$$

$$\pi...\mathbb{Z}$$
; $0...\mathbb{Q}^*$; $-\frac{7}{3}...\mathbb{Q}^{+*}$; $\sqrt{16}...\mathbb{N}$; $0...\mathbb{R}^*$;

$$\{1;3;-8\}...\mathbb{N} \; \; ; \; \mathbb{R}^+...\mathbb{R} \; \; ; \; \frac{1}{2}...D \; ; \; \frac{1}{3}...D$$

Exercice3: Calculer et_simplifier : $A = \frac{3}{4} + \frac{5}{3} - \frac{7}{6}$

$$B = \frac{-2}{3} + \frac{7}{6} - \frac{1}{4} - 2 \quad C = \left(\frac{2}{3} - \frac{5}{2}\right)^2 \quad D = \frac{5 + \frac{1}{3}}{2 - \frac{3}{2}}$$

$$E = \left(1 - \frac{1}{3}\right)\left(\frac{2}{5} + 1 - \frac{1}{2}\right) \quad F = \frac{7 - \frac{4}{\pi}}{12 - 21\pi}$$

$$G = \left[(a-c) - (a-b) \right] - \left[(c-a) + (b-c) \right]$$

Exercice4: Calculer et_simplifier:

$$A = \sqrt{\frac{9}{2}}$$
; $B = \frac{\sqrt{28}}{\sqrt{14}}$; $C = 3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180}$

$$D = (\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} + \sqrt{2} + \sqrt{5}) : E = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} + \sqrt{5}}$$

Exercice5:Soit
$$E = \frac{5\sqrt{7}}{\sqrt{2} - \sqrt{7}} + \frac{5\sqrt{2}}{\sqrt{2} + \sqrt{7}}$$

Montrer que : E est nombre entier relatif

Exercice6: Calculer et simplifier

$$A = \sqrt{2 - \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2 + \sqrt{2}}} \times \sqrt{2 + \sqrt{2}} \times \sqrt{2}$$

Exercice7: Rendre le dénominateur rationnel du quotient

suivant:
$$A = \frac{1}{\sqrt{2}-1}$$

Exercice8: simplifier et écrire sous forme d'une puissance

$$A = 2^{3} \times (2^{2})^{4} \times (2^{-5})^{3}$$
 $B = (-3)^{1} \times (-3)^{5} \times (3)^{2} \times (-3)^{-10}$

$$C = \frac{3^{-5} \times 4^{-2}}{12^{3}} \times \frac{9}{2^{2}}$$

$$D = \frac{(-2)^{3} \times (4^{2})^{-1} \times 8}{1024 \times (-16)^{-4}}$$

$$E = \frac{10^{-8} \times 10^9 \times 10^7 \times 10^{-4}}{10^{-2} \times 10^3 \times 10^5}$$

Exercice9 : Ecrire en notation scientifique les nombres suivants :B = $35 \times 10^6 + 3 \times 10^6 + 2.9 \times 10^6$

$$C = -0.8 \times 10^7 + 0.05 \times 10^7 - 2.32 \times 10^7$$

Exercice10 : Ecrire en notation scientifique le nombre $A = 9 \times 10^{-3} + 0.4 \times 10^{-2} - 9 \times 10^{-4}$ en mettant d'abord 10^{-4} en facteur et sans utiliser de calculatrice.

Exercice11: $x \in \mathbb{R}$ Développer et calculer et simplifier

$$A = \left(\sqrt{5} + \sqrt{2}\right)^{2} - \left(\sqrt{5} - \sqrt{2}\right)^{2} \text{ et } B = \left[\left(\sqrt{2} - \sqrt{3}\right)\left(\sqrt{2} + \sqrt{3}\right)\right]^{2}$$

$$C = (\sqrt{2} + 1)^3$$
 $D = (3x - 2)^3$ $E = (x + 2)(x^2 - 2x + 4)$

$$F = (200520052006)^{2} - (200520052005 \times 200520052007)$$

(Lorsque la calculatrice tombe en panne ou ne peut pas calculer) **Exercice12:** Factoriser les expressions suivantes : $x \in \mathbb{R}$

1)
$$49x^2 - 81$$
 2) $16x^2 - 8x + 1$ 3) $x^3 - 8$

4)
$$C = (a + 1) (2a - 3) + 6(a + 1)$$
 $D = 27x^3 + 1$

Exercice 13: $x \in \mathbb{R}$ Développer et calculer et simplifier

$$A = (3+\sqrt{11})^{2} - (3-\sqrt{11})^{2} \qquad B = (4\sqrt{3}-7)^{2015} \times (4\sqrt{3}+7)^{2015}$$

$$C = (\sqrt{75}-\sqrt{98}) \times (5\sqrt{3}+7\sqrt{2}) \qquad D = (5x+2)^{3}$$

$$E = (\sqrt{3} - 1)^3$$
 $F = (2x - 3)(4x^2 + 6x + 9)$

 $G = (2015200052004)^{2} - (2015200052002 \times 2015200052006)$

Exercice14: Remplissez les blancs suivants:

$$10-4\sqrt{6} = (...-..)^2$$
 et $4+2\sqrt{2} = (...+...)^2$

Exercice15: $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$ et $a \ge b$

Montrer que :
$$\sqrt{a+\sqrt{a^2-b^2}} = \frac{\sqrt{2}}{2} \left(\sqrt{a-b} + \sqrt{a+b}\right)$$

Exercice16: Factoriser les expressions suivantes : $x \in \mathbb{R}$

$$A = 16x^2 - 8x + 1$$
; $B = 16 - 25x^2$; $C = 1 - (1 - 3x)^2$

$$D = (2x-1)^3 - 8$$
; $E = 27 + x^3$; $F = x^{12} - 2x^6 + 1$

$$H = x^3 + 1 + 2(x^2 - 1) - (x + 1)$$
 et $G = x^5 + x^3 - x^2 - 1$