Professeur: Rachid BELEMOU

Lycée: Prince Mbulay Abdellah

Cours CALCUL VECTORIEL

Niveau: TCT-TCS: BIOF

Année : 2022-2023

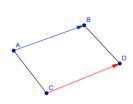
I) Vecteurs du plan

Soient A et B deux points du plan (P)

Un vecteur \overrightarrow{AB} est défini par trois données :

- une *direction* : celle d'une droite (AB)
- Un sens de parcours (dans la direction de la droite);
- une *norme* (ou *longueur*) et on note : $\|\overrightarrow{AB}\| = AB$

II) L'égalité de deux vecteurs



Deux vecteurs \overrightarrow{AB} et CD sont égaux s'ils ont même direction, même sens et même norme

Remarques:

• Si
$$\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF} = ...,$$

on note ce vecteur \vec{u} . \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont des représentants du même vecteur \vec{u} .

- $\overrightarrow{AB} = \overrightarrow{0}$ si et seulement si A = B.
- $\overrightarrow{BA} = -\overrightarrow{AB}$ (*L'opposé* du vecteur)
- pour tout point A du plan $\overrightarrow{AA} = \overrightarrow{0}$ (le vecteur nul)

Propriété1 : Soient A ; B; C ; D des points du plan (P)

tel que $A \neq B$ et $C \neq D$

 $\overrightarrow{AB} = \overrightarrow{CD}$ Ssi ABDC est un parallélogramme

Propriété2: Soient A; B; C; D des points du plan(P)

 $\overrightarrow{AB} = \overrightarrow{CD}$ SSI $\overrightarrow{AC} = \overrightarrow{BD}$

Propriété3: Etant donné un point A et un vecteur u – il existe un point M unique tel que $\overline{AM} = \overline{u}$.

III) Somme de deux vecteurs

1) Relation de Chasles: Soit A, B, C trois points du plan. On a la relation suivante: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ (Relation \overline{d} e Chasles)

Remarque:

Cette relation de Chasles s'utilise de trois manières différentes :

- Tout d'abord, c'est cette relation qui définit la somme de deux vecteurs.
- Cette relation permet de réduire des sommes vectorielles (« factorisation »).
- Cette relation permet dans les démonstrations d'intercaler des points dans des écritures vectorielles (« développement »).

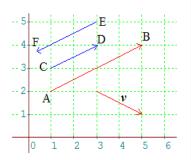
Exemple:

• Les vecteurs \overrightarrow{AB}

, EF ont même direction

- \overrightarrow{AB} et \overrightarrow{EF} sont de sens contraire.
- Les vecteurs

 \overrightarrow{AB} , \overrightarrow{v} n'ont pas la même direction 60



Exemple : on considére les vecteurs :

 $\overrightarrow{U} = \overrightarrow{BC} - \overrightarrow{AC} - \overrightarrow{BA} + \overrightarrow{AB}$ et $\overrightarrow{V} = \overrightarrow{BE} + \overrightarrow{DF} + \overrightarrow{EF} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{FA}$

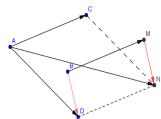
Simplifier les vecteurs : \overrightarrow{U} et \overrightarrow{V}

Exercice: Soient A; B; C; D des points du plan P

1)construire les points M et N tels que : $\overrightarrow{BM} = \overrightarrow{AC}$

et $\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{AD}$

2)comparer les vecteurs \overrightarrow{BD} et \overrightarrow{MN}

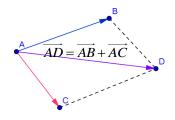


2) Règle du parallélogramme : Soient les vecteurs \vec{u} et \vec{v} deux vecteurs du plan et A un point du plan

il existe un point B unique tel que $\overrightarrow{AB} = \overrightarrow{u}$ et il existe un point C unique tel que $\overrightarrow{AC} = \overrightarrow{v}$

la somme des vecteurs u et v est le vecteur

AD = AB + AC tel que ABDC est un parallélogramme



Remarque: Soit u et v deux vecteurs du plan

La différence de u et v est égale à la somme de u et $\left(-\vec{v}\right)$ on écrit : $\vec{u} - \vec{v} = \vec{u} + \left(-\vec{v}\right)$

IV) La multiplication d'un vecteur par un réel

1. Définition

u un vecteur non nul et un nombre non nul k, on appelle produit du vecteur u par le nombre k est le vecteur $k \cdot u$ ayant les caractéristiques suivantes:

 $k \cdot u$ et u ont même direction, même sens si $k \succ 0$ et de sens contraire si $k \prec 0$

2. remarques :

$$k \cdot \vec{0} = \vec{0}$$
 et $1 \cdot \vec{u} = \vec{u}$, $(-1) \cdot \vec{u} = -\vec{u}$
-Si $k \cdot \vec{u} = \vec{0}$ alors $k = 0$ ou $\vec{u} = \vec{0}$

$$-3\vec{u}$$

3. Propriétés : -

Quels que soient les vecteurs u et v et les nombres a et b dans \mathbb{R} :1) $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ 2) $(a+b)\vec{u} = a\vec{u} + b\vec{u}$ 3) $a(b\vec{u}) = (a \times b)\vec{u}$ 4) $1\vec{u} = \vec{u}$ 5) $a(\vec{u} - \vec{v}) = a\vec{u} - a\vec{v}$ 6) $(a-b)\vec{u} = a\vec{u} - b\vec{u}$

<u>Application1</u>: Soient A, B, C trois points du plan non alignés et on considère D et E du plan tel que :

$$\overrightarrow{AD} = \overrightarrow{BC}$$
 et $\overrightarrow{AE} + \overrightarrow{AD} = \overrightarrow{0}$

1)Faire un schéma

2)Quelle est la nature du quadrilatère EACB justifier votre réponse

Application2:

Soit u et v et w des vecteurs du plan et A, B, C, D, O, E des points du plan tel que : $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$ et $\overrightarrow{w} = \overrightarrow{OC}$ et $\overrightarrow{OD} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{OE} = \overrightarrow{v} + \overrightarrow{w}$

1)Faire une figure

2)Montrer que ACEB est un parallélogramme et justifier votre réponse

Application3:

Soit ABCD est un parallélogramme;

on pose : AB = i et AC = j

écrire les vecteurs \overrightarrow{AD} et \overrightarrow{BD} en fonction de \overrightarrow{i} et \overrightarrow{j}

Application1:

Soit A, B, C trois points du plan non alignés

On considère M, N, P et Q du plan tel que :

$$\overrightarrow{AM} = 2\overrightarrow{BC}$$
 et $\overrightarrow{AN} = -2\overrightarrow{AC}$ et $\overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{AP}$ et $\overrightarrow{AQ} = \frac{-1}{2}\overrightarrow{AP}$

1) Faire une figure 2) En déduire que : $2\overrightarrow{AB} = -\overrightarrow{AP}$ et B = Q

Application 1: soient les vecteurs u et v Simplifier l'écriture des vecteurs suivants :

$$\overrightarrow{W}_1 = 2(\overrightarrow{u} + \overrightarrow{v}) - 4(\frac{1}{2}\overrightarrow{u} - \overrightarrow{v}) \quad \text{et}$$

$$\overrightarrow{W_2} = \frac{1}{3} (3\overrightarrow{u} - 9\overrightarrow{v}) + \frac{1}{2} (2\overrightarrow{u} + 6\overrightarrow{v}) - 2\overrightarrow{u}$$

Application2: Soit ABC est un triangle

on pose : $\overrightarrow{AB} = \overrightarrow{i}$ et $\overrightarrow{AC} = \overrightarrow{j}$ construire le vecteur $\overrightarrow{3i} - 2\overrightarrow{j}$

V)La colinéarité de deux vecteurs

<u>1.Définition</u>: Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe une constante $k \in \mathbb{R}$ telle que $\vec{u} = k\vec{v}$. Remarque:

Deux vecteurs non nuls sont colinéaires ssi ils ont la même direction.

2. Propriété

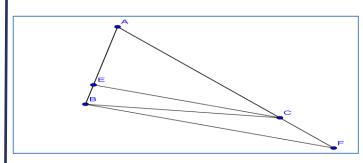
- 1) Trois points A, B et C du plan sont alignés si et seulement s'il existe $k \in \mathbb{R}$ telle que $\overrightarrow{AB} = k\overrightarrow{AC}$.
- 2) Soit (AB) une droite. Alors $M \in (D)$ ssi \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.
- 3) Deux droites (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Application 1 : soit ABC est un triangle. Les points E et F sont tels que :

$$\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$$
 et $\overrightarrow{CE} = \frac{1}{4}\overrightarrow{AB}$

- 1)Faire une figure
- 2)montrer que : Les points E , F et B sont alignés

Application 2: soit ABC est un triangle. Les points E et F



sont tels que :
$$\overrightarrow{AE} = \frac{3}{4} \overrightarrow{AB}$$
 et $\overrightarrow{AF} = \frac{4}{3} \overrightarrow{AC}$

- 1)Faire une figure
- 2)écrire les vecteurs \overrightarrow{EC} et \overrightarrow{BF} en fonction de :

$$\overrightarrow{AB}$$
 et \overrightarrow{AC}

3) montrer que deux droites (EC) et (BF) sont parallèles

VI) Milieu d'un segment

<u>Propriété1</u>: Soient A, B et I trois points du plan. Les quatre assertions suivantes sont équivalentes :

1) I est le milieu du segment [AB].

2)
$$\overrightarrow{AI} = \overrightarrow{IB}$$
 3) $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$ 4) $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$

Propriété2 : Caractérisation du milieu :

Soient A, B et I trois points du plan.

I est le milieu du segment [AB] ssi pour tout point M on a :

$$\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$$

Démonstration:

Application : soit ABC est un triangle. Les points E et F sont tels que :

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$

- 1)Faire une figure
- 2)montrer que : C est le milieu du segment [EF]

Professeur: Rachid BELEMOU

: Prince Moulay Abdellah

ExercicesCalcul vectoriel dans le plan

Niveau: TCT-TCS: BIOF

Année : 2021-2022

Exercice 1 : On considére les vecteurs :

$$\overrightarrow{U} = \overrightarrow{BC} - \overrightarrow{AC} - \overrightarrow{BA} + \overrightarrow{AB}$$
 et $\overrightarrow{V} = \overrightarrow{BE} + \overrightarrow{DF} + \overrightarrow{EF} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{FA}$

Simplifier les vecteurs : \overrightarrow{U} et \overrightarrow{V}

Exercice 2: Soient A; B; C; D des points du plan (P)

- 1) Construire les points M et N tels que : $\overrightarrow{BM} = \overrightarrow{AC}$
- $et_{\overrightarrow{AN}} = \overrightarrow{AC} + \overrightarrow{AD}$

Lycée

2) Comparer les vecteurs \overrightarrow{BD} et \overrightarrow{MN}

Exercice 3 : Soient A, B, C trois points du plan non alignés et on considère D et E du plan tel que :

$$\overrightarrow{AD} = \overrightarrow{BC}$$
 et $\overrightarrow{AE} + \overrightarrow{AD} = \overrightarrow{0}$

- 1)Faire un schéma
- 2)Quelle est la nature du quadrilatère EACB justifier votre

Exercice 4 : Soient \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} des vecteurs du plan et A,

B, C, D, O, E des points du plan tel que : $\vec{u} = \overrightarrow{OA}$ et

$$\overrightarrow{v} = \overrightarrow{OB}$$
 et $\overrightarrow{w} = \overrightarrow{OC}$ et $\overrightarrow{OD} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{OE} = \overrightarrow{v} + \overrightarrow{w}$

- 1)Faire une figure
- 2)Montrer que ACEB est un parallélogramme et justifier votre réponse

Exercice 5 : Soit ABCD est un parallélogramme ;

On pose : $\overrightarrow{AB} = \overrightarrow{i}$ et $\overrightarrow{AC} = \overrightarrow{j}$

Écrire les vecteurs \overrightarrow{AD} et \overrightarrow{BD} en fonction de \overrightarrow{i} et \overrightarrow{j}

Exercice 6: Soient A, B, C trois points du plan non alignés

On considère M, N, P et Q du plan tel que : $\overrightarrow{AM} = 2\overrightarrow{BC}$

et
$$\overrightarrow{AN} = -2\overrightarrow{AC}$$
 et $\overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{AP}$ et $\overrightarrow{AQ} = \frac{-1}{2}\overrightarrow{AP}$

- 1) Faire une figure
- 2) En déduire que : $2\overrightarrow{AB} = -\overrightarrow{AP}$ et B = Q

Exercice 7: Soient les vecteurs \vec{u} et \vec{v}

Simplifier l'écriture des vecteurs suivants :

$$\overrightarrow{W}_1 = 2(\overrightarrow{u} + \overrightarrow{v}) - 4(\frac{1}{2}\overrightarrow{u} - \overrightarrow{v})$$
 et

$$\overrightarrow{W}_{2} = \frac{1}{3} (3\overrightarrow{u} - 9\overrightarrow{v}) + \frac{1}{2} (2\overrightarrow{u} + 6\overrightarrow{v}) - 2\overrightarrow{u}$$

Exercice8: Soit ABC est un triangle

On pose : $\overrightarrow{AB} = \overrightarrow{i}$ et $\overrightarrow{AC} = \overrightarrow{j}$ construire le vecteur $3\overrightarrow{i} - 2\overrightarrow{j}$

Exercice 9: Soit ABC est un triangle. Les points E et F sont

tels que :
$$\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$$
 et $\overrightarrow{CE} = \frac{1}{4}\overrightarrow{AB}$

- 1)Faire une figure
- 2) Montrer que : Les points E, F et B sont alignés

Exercice10: soit ABC est un triangle. Les points E et F sont tels que : $\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$

- 1)Faire une figure
- 2) Écrire les vecteurs \overrightarrow{EC} et \overrightarrow{BF} en fonction de : \overrightarrow{AB} et \overrightarrow{AC}
- 3) Montrer que deux droites (EC) et (BF) sont parallèles

Exercice 11 : Soit ABC est un triangle. Les points E et F sont tels que : $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$ et $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$ 1) Faire une figure

2) Montrer que : C est le milieu du segment [EF]